
VAM

Virtual Assembler Machine

–

An Interpreter for a Simple Processor’s

Instruction Set

Dr. Jürgen Vollmer
Juergen.Vollmer@informatik-vollmer.de

11th March 2005
Version 1.1

Contents

1 DESCRIPTION 1

2 FORMAT OF THE SOURCE FILE 1

3 ARCHITECTURE OF THE PROCESSOR VAM 1
3.1 Special Registers . 2
3.2 Layout of the Memory . 2
3.3 VAM Runtime Errors . 3

4 MACHINE INSTRUCTIONS 3
4.1 Labels . 3
4.2 Control Flow Instructions . 4
4.3 Conditional Control Flow Instructions 4
4.4 Arithmetic instructions . 5
4.5 Transport Instructions . 7
4.6 Stack Related Instructions . 8
4.7 Input/Output Instructions . 8

4.7.1 Input . 8
4.7.2 Output . 8

5 SYNOPSIS 9

6 OPTIONS 9

7 EXAMPLES 10

8 REQUIREMENTS 10

1

9 AUTHOR 11

10 LICENSE 11

11 CHANGELOG 11

1 DESCRIPTION

vam.pl is an interpreter of a simple processor’s (designed by me and called
VAM, Virtual Assembler Processor) instruction set. It has the ”usual” machine
instructions available on ”real” processors.

vam.pl may be used e.g. in a compiler construction course to have a ”play
ground” when generating machine code.

vam.pl read the instructions to be interpreted either from stdin or the file(s)
srcfile given on the command line. The BIOS (Basic Input / Output System)
of the processor allows to read and write a file during runtime (see –input and
–output).

2 FORMAT OF THE SOURCE FILE

The source file srcfile contains the assembler instructions to be interpreted.
A line is either empty, contains a comment or one instruction or one (string

or data) declaration.
The # character starts a comment up to the end of the line.
The instruction and registers names are case insensitive. Labels and string

literals are case sensitive.

3 ARCHITECTURE OF THE PROCESSOR VAM

The VAM processor has a usual von-Neumann architecture with registers, mem-
ory, an ALU (arithmetic logical unit) etc.

The processor knows two data types: (signed) integers and floating point
numbers. Memory addresses are positive integer values.

The number of registers may be specified by the –registers command line
option and are denoted by R0, R1, ... A register may hold one value of a given
data type at a time.

The memory is partitioned into memory cells, which may hold one value of
a given data type at a time.

3.1 Special Registers

The registers R0, R1 und R2 are reserved and should not be used for other
purposes (even it is legal to modify them). All other registers may be used
without any restrictions.

R0

The register R0 is used as instruction counter and set to 1 before the
program starts.

2

With the exception of the control flow and non-executable statements,
after performing the operation specified by an instruction, the instruction
counter R0 will be incremented by 1.

R1

The register R1 is used as stack pointer pointing to the top of the stack
maintained by some instructions (see below). At program start R1 is
initialized to the value of high-memory.

R2

The register R2 holds the pointer to the first unused memory cell. The the
free memory may be used manage dynamically allocated memory similar
to the sbrk(2) call of the C-library.

3.2 Layout of the Memory

Address | Description
----------------+---

0 | Undefined address
----------------+---

1 | The instruction to be executed at program start
... | More instructions.
<code-end> | The textual last instruction

----------------+---
<data-start> | Global data
... |
<data-end> |

----------------+---
<malloc-start> | Start of free memory.
... |
<high-memory>-1| Last memory cell, initial top of stack

----------------+---

The free memory ”grows” towards larger address, while the stack grows
towards small addresses.

3.3 VAM Runtime Errors

The VAM emits under the following conditions an error message and terminates:

* VAM does not emit an error if the two areas overlap.

* VAM emits an error if the memory at address 0 or an address >= high-
memory is accessed.

* VAM emits an error, if a memory cell not containing an instruction
should be read as instruction and executed.

3

* Division by 0 causes an error.

4 MACHINE INSTRUCTIONS

In the sequel the instruction are declared, which the processor is able to process.
In the description below r, r1, r2, r3 specify any processor register R0, R1, ...,
Rmax registers-1, even the reserved ones. If for an instruction several registers
may be specified, the same register may be used several times.

The notion M[address] specifies the access of the memory cell at the given
address.

4.1 Labels

There are three kinds of named entities, named by so called label :

1. Data declaration:

label : DATA <count>

2. String declaration

label : ”character string”

3. Instruction

label : one-instruction

A label consists of a letter followed by letters, digits or an underscore charac-
ter. The labels of each entity class (data, string, instruction) reside in a separate
namespace and must be unique in that namespace.

The string and data declarations are non-executable instructions, therefore
the instruction counter is not modified. They may occur everywhere in the
source file.

Memory cells holding global data must be reserved and a label must be given
be given. This declaration reserves count memory cells. The address of the first
memory cell may be accessed using the name label.

A string declaration declares a name for a character string used in the
write s instruction. The two characters ”\n” represent a newline. The two
characters ”\t” represent a tabulator.

A control flow statement may use an instruction label to specify the next
statement to be executed.

Some instructions have a suffix in their name. The suffix f indicates floating
point and i integer operation. The suffix c indicates that the instruction takes
a literal integer argument, r a register is used and l a label.

A prefix i indicates some kind of indirection.

4.2 Control Flow Instructions

nop

No Operation, do nothing and continue execution with the next instruc-
tion. If a label declaration is not followed by an instruction, a nop is
assumed.

4

end

Stop the processor and terminate the interpretation.

goto label

igoto r

Continue execution with the instruction named by label, or at the address
stored in register r.

call r1 , label

icall r1 , r2

Continue execution with the instruction named by label (or the address
stored in register r2) and push the address of the statement following the
call onto the stack pointed to by r2.
r1 = r1 - 1; Memory[r1] = R0 + 1; R0 = label
r1 = r1 - 1; Memory[r1] = R0 + 1; R0 = r2

return r

Get address from the top of the stack r, pop it and continue execution at
the instruction specified by that address.
R0 = Memory[r]; r = r + 1;

4.3 Conditional Control Flow Instructions

If register r holds the shown condition, then continue execution with the in-
struction specified by label, else continue with the textual next instruction.

The registers should contain an integer value.
See also cmp i and cmp f.

iflt r , label

less then: r < 0

ifle r , label

less equal: r <= 0

ifeq r , label

equal: r = 0

ifne r , label

not equal: r != 0

ifgt r , label

greater then: r > 0

ifge r , label

greater equal: r >= 0

iftrue r , label

true-value: r != 0

iftrue r , label

false-value: r == 0

5

4.4 Arithmetic instructions

Except when noted, all registers used by an instruction must hold values of the
same datatype, which must match the type of the instruction. Otherwise the
result may be undefined.

The processing of an instructions read the source registers performs the
operation and store the result in the destination register.

There is no test over underflow or overflow of the result. A division by 0
causes an error.

add i r1 , r2 , r3

add f r1 , r2 , r3

Addition: r1 = r2 + r3

sub i r1 , r2 , r3

sub f r1 , r2 , r3

Subtraction: r1 = r2 - r3

mult i r1 , r2 , r3

mult f r1 , r2 , r3

Multiplication: r1 = r2 * r3

div i r1 , r2 , r3

div f r1 , r2 , r3

Division: r1 = r2 / r3

If r3 == 0 an error message is emitted and the program is terminated.

mod i r1 , r2 , r3

Modulo: r1 = r2 % r3

If r3 == 0 an error message is emitted and the program is terminated.

Note: there is no floating point mod operation!

cmp i r1 , r2 , r3

cmp f r1 , r2 , r3

comparison: r1 = r2 compare r3

r1 holds an integer -1, 0, or 1 according to:

-1 if r2 < r3

0 if r2 == r3

1 if r2 > r3

add c r1 , r2 , value

sub c r1 , r2 , value

mult c r1 , r2 , value

6

div c r1 , r2 , value

mod c r1 , r2 , value

cmp c r1 , r2 , value

Integer arithmetic / comparison with an (signed) integer constant:

r1 = r2 <operand> value

f2i r1 , r2

Type cast: r1 = (int) r2 (in C speak)

i2f r1 , r2

Type cast: r1 = (float) r2 (in C speak)

lshift r1 , r2 , r3

rshift r1 , r2 , r3

Left shift: r1 = r2 << r3 (in C speak)

Right shift: r1 = r2 >> r3 (in C speak)

All registers must hold integer values.

4.5 Transport Instructions

Transport instructions move values from one place to another.
If a register specifies an address, it must hold an positive integer value.

Everything else is undefined.

copy r1 , r2

Copies the content of registers: r1 = r2

cload i r , value

cload f r , value

Loads the (signed) integer or floating point value into the register r.

load r1 , r2

load l r1 , label

load c r1 , r2 , value

Load the content a memory cell to a register. label is a data label and
value is a signed integer.

r1 = Memory[r2]

r1 = Memory[label]

r1 = Memory[r2 + value]

iload r1 , r2 , r3

Indirect load with register offset: r1 = Memory[Memory[r2] + r3]

7

iload c r1 , r2 , value

Indirect load with constant offset: r1 = Memory[Memory[r2] + value]

value is an (signed) integer number.

store r1 , r2

store l label , r2

store c r1 , r2 , value

Store the content a register in a memory cell. label is a data label and
value is a signed integer.

Memory[r1] = r2

Memory[label] = r2

Memory[r1 + value] = r2

istore r1 , r2 , r3

Indirect store with register offset: Memory[Memory[r1] + r2] = r3

istore c r1 , r2 , value

Indirect store with constant offset: Memory[Memory[r1] + value] = r2

value is an (signed) integer number.

4.6 Stack Related Instructions

Stack grows from higher to lower addresses.

push r1 , r2

Push the value of r2 to the stack pointed by r1.

r1 = r1 - 1; Memory[r1] = r2

r1 should contain an address, while r2 may hold any value.

pop r1 , value

pop r r1 , r2

Pop values / r2 many values from the stack.

r1 = r1 + r2

r1 = r1 + value

r1 should contain an address, while r2 / value is an integer.

4.7 Input/Output Instructions

The VAM has a build in BIOS (basic I/O system) which allows to write character
strings and numbers to a file (see –output). Only numbers may be read from
a file (see –input).

###

8

4.7.1 Input

The following instruction read some values from the input file.

read i r1 , r2

read f r1 , r2

Read a (signed) integer / floating point number and store it in register r1
and store an error code in r2. If the read value is an integer or floating
point constant, then r2 holds the value 1 (true), else 0 (false)

If r1 and r2 denote the same register, no error code is stored. In case of
an error the value 0 is stored in the register.

The read number must be terminated by RETURN (newline).

eof r

Test if End Of File (EOF) has been reached: r = EOF? 1 : 0 (in C speak)

4.7.2 Output

The following instruction write some values to the output file.

write s label

Write the character string denoted by label.

write i R

Write the integer value stored in register R.

write f R

Write the floating point value stored in register R.

5 SYNOPSIS

vam.pl [–help] [–manual | -M] [–verbose] [–Version] [–input infile] [–output out-
file] [–registers count] [–memory size] [–dump | -D] [–statistics] [srcfile...]

6 OPTIONS

–input infile

Read the input of the interpreted program, from infile.

Default: stdin.

–output outfile

Write the output of the interpreted program, to outfile.

Default: stdout.

9

–memory size

Size of the avaliable memory. size is a positive number followed by k
(kilo) or M (mega), which specifies the size in kilo or mega memory cells
respectively.

Default: 32M

–registers count

Number of the available registers: R0, R1, ... Rcount-1.

Default: 32

–help

Show this help and terminate.

–manual -M

Show the entire manual and terminate.

–verbose

Verbose.

–Version

Show program version.

–dump

-D

After parsing the source file, dump the instruction list.

–statistics

Emit some statistical information about the program.

Option names may abbreviated as long as the are unique. Instead of –XX
-XX may be used.

7 EXAMPLES

The following program prints the square numbers 1 ... nˆ2:

###
Description: A VAM program computing square numbers
Input: read a number
Output: write square numbers 1 n^2

s_in: "Please input an integer: "
s_out: "^2 = "
NL: "\n"

start:
write_s s_in
read_i R4, R4 # R4: n (ignore errors)
write_s NL

10

cload_i R5, 1 # R5: i = 1

loop:
cmp_i R6, R5, R4 # if (i > n) goto end
ifgt R6, end

mult_i R6, R5, R5 # i * i

write_i R5 # printf ("%d^2 = %d\n", i, i*i);
write_s s_out
write_i R6
write_s NL

add_c R5, R5, 1 # i = i + 1

goto loop # and loop

end:
end

###

More examples will be found in the example files shipped together with this
program.

8 REQUIREMENTS

perl(1)

9 AUTHOR

Dr. Jürgen Vollmer <Juergen.Vollmer@informatik-vollmer.de>
Copyright (C) 2005 Dr. Jürgen Vollmer, Karlsruhe.
Homepage of VAM: http://www.informatik-vollmer.de/software/vam.html
If have written ”large programs” doing some interesting job, it would be nice to
send me your VAM source.
If you find this software useful, I would be glad to receive a postcard from you,
showing the place where you’re living:

Dr. Jürgen Vollmer, Viktoriastrasse 15, D-76133 Karlsruhe, Germany.

10 LICENSE

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place - Suite 330, Boston, MA 02111-1307, USA.
http://www.gnu.org/copyleft/gpl.html

11

11 CHANGELOG

$Log: vam.pl,v $
Revision 1.8 2005/07/12 12:06:43 vollmer
*** empty log message ***

Revision 1.7 2005/07/12 11:20:57 vollmer
*** empty log message ***

Revision 1.6 2005/06/19 10:41:10 vollmer
fixed focu

Revision 1.5 2005/03/11 22:58:51 vollmer
fixed name of vam_ifne

Revision 1.4 2005/03/11 22:51:40 vollmer
sub cm: if a memory cell undefined during an access, assign 0 to it

Revision 1.3 2005/03/11 22:48:05 vollmer
fixed sub_f

Revision 1.2 2005/03/11 14:11:45 vollmer
fixed docu

Revision 1.1 2005/02/24 16:55:52 vollmer
Initial revision

12

