Parallelism for Free: Efficient and Optimal Bitvector
Analyses for Parallel Programs

JENS KNOOP and BERNHARD STEFFEN
Universitat Passau

and

JURGEN VOLLMER

Universitat Karlsruhe

We consider parallel programs with shared memory and interleaving semantics, for which we show
how to construct for unidirectional bitvector problems optimal analysis algorithms that are as ef-
ficient as their purely sequential counterparts and that can easily be implemented. Whereas the
complexity result is rather obvious, our optimality result is a consequence of a new Kam/Ullman-
style Coincidence Theorem. Thus using our method, the standard algorithms for sequential pro-
grams computing liveness, availability, very busyness, reaching definitions, definition-use chains,
or the analyses for performing code motion, assignment motion, partial dead-code elimination or
strength reduction, can straightforward be transferred to the parallel setting at almost no cost.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifica-
tions—concurrent, distributed, and parallel languages; D.3.4 [Programming Techniques]: Pro-
cessors—code generation; compilers; optimization

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: Assignment motion, bitvector problems, code motion, data
flow analysis, definition-use chains, interleaving semantics, parallelism, partial dead-code elimina-
tion, program optimization, shared memory, strength reduction, synchronization

1. MOTIVATION

Parallel implementations are of growing interest, as they are more and more sup-
ported by modern hardware environments. However, despite its importance [Srini-
vasan and Wolfe 1991; Srinivasan et al. 1993; Wolfe and Srinivasan 1991], there
is currently very little work on classical data flow analysis for parallel languages.

The third author has been supported by the ESPRI'T Project COMPARE number 5933.
A preliminary version of this article was presented at TACAS’95.

Authors’ addresses: J. Knoop and B. Steffen, Fakultat fur Mathematik und Infor-
matik, Universitdt Passau, Innstrasse 33, D-94032 Passau, Germany; email: {knoop;
steffen}@fmi.uni-passau.de; J. Vollmer, Fakultat fiir Informatik, Institut fiir Programm-
strukturen und Datenorganisation (IPD), Universitat Karlsruhe, Vincenz-Priefinitz-Strafie
3, D-76128 Karlsruhe, Germany; email: vollmer@ipd.info.uni-karlsruhe.de.

Permission to make digital/hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee.

© 1996 ACM 0164-0925/96/0500-0268 $03.50

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996, Pages 268-299.

Parallelism for Free . 269

Probably, the reason for this deficiency is that a naive adaptation fails [Midkiff and
Padua 1990] and that the straightforward correct adaptation needs an unacceptable
effort, which is caused by the interleavings that manifest the possible executions of
a parallel program.

Thus, either heuristics are proposed to avoid the consideration of all the in-
terleavings [McDowell 1989], or restricted situations are considered, which do not
require to consider the interleavings at all. Grunwald and Srinivasan [1993a] for
example require data independence of parallel components according to the PCF
Fortran standard. Thus the result of a parallel execution does not depend on the
particular choice of the interleaving, which is exploited for the construction of an
optimal and efficient algorithm determining the reaching-definition information.
However, it 1s not investigated how to systematically adapt their approach to other
problems. A different setup is considered by Long and Clarke [1991], who propose
a data flow analysis framework for Ada programs with task parallelism and ren-
dezvous synchronization, but without shared variables. Though their Ada-specific
setup is incomparable to ours, in particular as shared variables are excluded, both
approaches have in common to borrow ideas from interprocedural data flow anal-
ysis. Dwyer and Clarke [1994] consider a setup similar to the one of Long and
Clarke with explicit tasking and rendezvous communication in the sense of Ada
tasking programs. They put emphasis on the trade-off between accuracy and effi-
clency with respect to explicitly stated correctness properties like mutual exclusion
or data races. Completely different to heuristic approaches is the approach of ab-
stract interpretation-based state space reduction proposed by Duri et al. [1993],
Chow and Harrison [1992; 1994], Godefroid and Wolper [1991], and Valmari [1990],
which allows general synchronization mechanisms but still requires the investiga-
tion of an appropriately reduced version of the global state space which 1s often
still unmanageable.

In this article we consider parallel programs with explicit parallelism, shared
memory, and interleaving semantics without special synchronization statements,
for which we show how to construct for unidirectional bitvector problems analysis
algorithms that

(1) optimally cover the phenomenon of interference
(2) are as efficient as their sequential counterparts and

(3) are easy to implement.

The first property is a consequence of a Kam/Ullman-style [Kam and Ullman
1977] Coincidence Theorem for bitvector analyses stating that the parallel meet
over all paths (PMOP) solution, which specifies the desired properties, coincides
with our parallel bitvector mazimal-fized-point (PMFPpyv) solution, which is the
basis of our algorithm. This result is rather surprising, as it states that, though
the various interleavings of the executions of parallel components are semantically
different, they need not be considered during bitvector analysis. This is the key
observation of this article.

The second property is a simple consequence of the fact that our algorithms
behave like standard bitvector algorithms. In particular, they do not require the
consideration of any kind of global state space. This is important, as even the
corresponding reduced state spaces would usually still be exponential in size.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

270 . Jens Knoop et al.

The third property i1s due to the fact that only a minor modification of the
sequential bitvector algorithm needs to be applied after a preprocess consisting of
a single fixed-point routine (cf. Section 3.4).

Thus, using our methods all the well-known algorithms for unidirectional bitvec-
tor problems can be adapted for parallel programs at almost no cost on the runtime
and the implementation side. This is of high importance in practice, as this class
of bitvector problems has a broad scope of applications ranging from simple analy-
ses like liveness, availability, very busyness, reaching definitions, and definition-use
chains [Hecht 1977] to sophisticated and powerful program optimizations like code
motion [Dhamdhere et al. 1992; Drechsler and Stadel 1993; Knoop et al. 1992;
1994a], partial dead-code elimination [Knoop et al. 1994b], assignment motion
[Knoop et al. 1995], and strength reduction [Knoop et al. 1993]. All these techniques
can now be made available for parallel programs. In Section 4 we demonstrate this
by two examples. We present the parallel extensions of the busy-code-motion trans-
formation of Knoop et al. [1994a], and the partial dead-code elimination algorithm
of Knoop et al. [1994b]. We conjecture that, like their sequential counterparts,
these algorithms are unique in that they optimally eliminate the partially redun-
dant computations and partially dead assignments in a parallel argument program,
respectively.

We remark that the results of this article do not directly apply to algorithms
which require bidirectional bitvector analyses like the pioneering code motion algo-
rithm of Morel and Renvoise [1979] or the strength reduction algorithms of Dhamd-
here [1989] and Joshi and Dhamdhere [1982a; 1982b]. This limitation has an anal-
ogy in interprocedural data flow analysis, where it turned out that unidirectionally
based algorithms can systematically be extended to capture the effects of procedure
calls precisely [Knoop and Steffen 1993; Knoop et al. 1994¢|, whereas extensions of
bidirectionally based algorithms usually result in heuristics [Morel 1984; Morel and
Renvoise 1981]. The best way to overcome the problems with bidirectional analyses
is to decompose them into sequences of unidirectional analyses as it was done for ex-
ample for the code motion algorithm of Morel and Renvoise [1979] and the strength
reduction algorithms of Dhamdhere [1989] and Joshi and Dhamdhere [1982a; 1982b]
by Knoop et al. [1992; 1994a] and Knoop et al. [1993], respectively. Actually, we
do not know of any practically relevant bidirectional bitvector analysis that cannot
be decomposed into unidirectional components.

Structure of the Article. After recalling the sequential situation in Section 2, we
develop the corresponding notions for the parallel situation in Section 3. Subse-
quently, we present two applications of our algorithm in Section 4, and draw our
conclusions in Section 5. The Appendix contains the detailed generic algorithm.

2. SEQUENTIAL PROGRAMS

In this section we summarize the sequential setting of data flow analysis.

2.1 Representation

In the sequential setting it i1s common to represent procedures as directed flow
graphs G = (N, E,s,e) with node set N and edge set E. Nodes n € N represent

the statements, edges (n,m) € E the nondeterministic branching structure of the

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Parallelism for Free . 271

procedure under consideration, and s and e denote the unique start node and end
node of (G, which are assumed to possess no predecessors and successors, respec-
tively, and to represent the empty statement skip. predg(n)=g4 {m|(m,n) € E'}
and succg(n)=q {m| (n,m) € E} denote the set of all immediate predeces-
sors and successors of a node n, respectively. A finite path in G is a sequence
(n1,...,nq) of nodes such that (n;,njy1) € £ for j€{l,...,9—1}. Pg[m,n]
denotes the set of all finite paths from m to n, and Pg[m,n|[the set of all finite
paths from m to a predecessor of n. Finally, every node n € N is assumed to lie
on a path from s to e.

2.2 Data Flow Analysis

Data flow analysis (DFA) is concerned with the static analysis of programs in
order to support the generation of efficient object code by “optimizing” compilers
[Hecht 1977; Muchnick and Jones 1981]. For imperative languages, DFA provides
information about the program states that may occur at some given program points
during execution. Theoretically well founded are DFAs that are based on abstract
interpretation [Cousot and Cousot 1977; Marriot 1993]. The point of this approach
is to replace the “full” semantics by a simpler more abstract version, which is
tailored to deal with a specific problem. Usually, the abstract semantics is specified
by a local semantic functional

[]:N=>(C—=C)

which gives abstract meaning to every program statement in terms of a transfor-
mation function on a complete lattice (C,M,C, L, T), whose elements express the
DFA-information of interest. In the following C will always denote a complete
lattice with least element L and greatest element T. As the start node s and the
end node e are assumed to represent the empty statement skip, they are usually
associated with the identity Ide on C.

A local semantic functional [] can easily be extended to cover finite paths as
well. For every path p=(n1,...,nq) € Pg[m, n], we define:

[p]= Ide if g<1
Pz [(na,...,ng)Jo[n1] otherwise.

2.2.1 The MOP-Solution of a DFA. The solution of the meet-over-all-paths
(MOP) approach in the sense of Kam and Ullman [1977], or for short, the MOP-
solution, defines the intuitively desired solution of a DFA. This approach directly
mimics possible program executions in that it “meets” (intersects) all informations
belonging to a program path reaching the program point under consideration. This
directly reflects our desires, but is in general not effective.

The MOP-Solution:
Vne N Ve €C. MOPg1)(n)(co)= {[p1(co)|p € Pgls,n[}.

2.2.2 The MFP-Solution of a DFA. The point of the mazimal-fized-point (MFP)
approach in the sense of Kam and Ullman [1977] is to iteratively approximate the
greatest solution of a system of equations which specifies consistency constraints
between preconditions of the nodes of G expressed in terms of C:

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

272 . Jens Knoop et al.

FEquation System 2.2.2.1.

ifn=s

re(n) = { 0
p 77 L TH{ [m](pre(m)) | m € preda(n)} otherwise.

Denoting the greatest solution of Equation System 2.2.2.1 with respect to the start
information ¢y € C by pre, , the solution of the MFP-approach is defined by:

The MFP-Solution: Vne& N Veq€C. MFP(g[1)(n)(co) =pre.,(n).

For monotonic functionals,! this leads to a suboptimal but algorithmic description
(see Algorithm A.1 in Appendix A). The question of optimality of the MFP-
solution was elegantly answered by Kildall [1972; 1973] and Kam and Ullman [1977]:

THEOREM 2.2.2.2. (THE (SEQUENTIAL) COINCIDENCE THEOREM). Given a
flow graph G = (N, E,s,e), the MFP-solution and the MOP-solution coincide, i.e.,
VneN Ve €C. MOP(g])(n)(co) =MFP |])(n)(co), whenever all the seman-
tic functions [n], n € N, are distributive.

2.2.3 The Functional Characterization of the MFP-Solution. From interproce-
dural DFA, it is well known that the MFP-solution can alternatively be defined
by means of a functional approach [Sharir and Pnueli 1981]. Here, one iteratively
approximates the greatest solution of a system of equations specifying consistency
between functions [[n]l, n € N. Intuitively, a function [[n] transforms a data
flow information which is assumed to be valid at the start node of the program into
the data flow information being valid before the execution of n.

Definition 2.2.3.1. (The Functional Approach). The functional [JJ: N = (€ —=C)
is defined as the greatest solution of the equation system given by:

| Ide if n=s
[n]= { [{I[m]ol[mI|m € predz(n)} otherwise.

The following equivalence result is important [Knoop and Steffen 1992]:
THEOREM 2.2.3.2. Vn € N Veo € C. MEPg [1)(n)(co)=[7n]l(co).

The functional characterization of the MFP-solution will be the (intuitive) key for
computing the parallel version of the maximal-fixed-point solution. As we are only
dealing with Boolean values later on, this characterization can easily be coded back
into the standard form.

3. PARALLEL PROGRAMS

As usual, we consider a parallel imperative programming language with interleav-
ing semantics. Formally, this means that we view parallel programs semantically

LA function f :C —C is called monotonic iff Ve,c' €C. cE c 1mp11es]’%) C F(c).
{

2A function f :C—C is called distributive iff VC' C C. fle)|c e C'}. Tt is
well known that distributivity is a stronger requirement than monotonlclty in the following sense:
A function f : C—C is monotonic iff v’ C c. f(I'le’y C TT{f(e)|cec'}.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Parallelism for Free . 273

as “abbreviations” of usually much larger nondeterministic programs, which re-
sult from a product construction between parallel components [Chow and Harrison
1992; 1994; Cousot and Cousot 1984]. In fact, in the worst case the size of the
nondeterministic “product” program grows exponentially in the number of parallel
components of the corresponding parallel program. This immediately clarifies the
dilemma of data flow analysis for parallel programs: even though it can be reduced
to standard data flow analysis on the corresponding nondeterministic program,
this approach is unacceptable in practice for complexity reasons. Fortunately, as
we will see in Section 3.3, unidirectional bitvector analyses, which are most relevant
in practice, can be performed as efficiently on parallel programs as on sequential
programs.

The following section establishes the notational background for the formal devel-
opment and the proofs.

3.1 Representation

Syntactically, parallelism is expressed by means of a par statement whose com-
ponents are assumed to be executed in parallel on a shared memory. As usual,
we assume that there are neither jumps leading into a component of a par state-
ment from outside nor vice versa. Without special synchronization statements this
already introduces the phenomena of interference and synchronization and allows
us to concentrate on the central features of our approach, which, however, is not
limited to this setting. For example, a replicator statement allowing a dynamical
process creation can be integrated along the lines of Chow and Harrison [1994] and
Vollmer [1994; 1995].

Similar to Srinivasan et al. [1993] and Grunwald and Srinivasan [1993a], we repre-
sent a parallel program by a nondeterministic parallel flow graph G* = (N*, E* | s*,
e*) with node set N* and edge set E* as illustrated in Figure 1. Except for sub-
graphs representing a par statement a parallel flow graph is a nondeterministic flow
graph in the sense of Section 2, i1.e., nodes n € N* represent the statements, edges
(m,n) € E* the nondeterministic branching structure of the procedure under con-
sideration, and s* and e* denote the distinct start node and end node, which are
assumed to possess no predecessors and successors, respectively. As in Section 2,
we assume that every node n € N* lies on a path from s* to e€* and that the
start node and the end node of a parallel flow graph represent the empty statement
skip. Additionally, let predg«(n)=4 {m|(m,n) € E*} and succg+(n)=q4 {m|
(n,m) € E* } denote the set of all immediate predecessors and successors of a node
n € N*, respectively.

A par statement and each of its components are also considered parallel flow
graphs. The graph G representing a complete par statement arises from linking
its component graphs by means of a ParBegin node and a ParEnd node having the
start nodes and the end nodes of the component graphs as their only successors
and predecessors, respectively. The ParBegin node and the ParEnd node are the
unique start node and end node of G and are assumed to represent the empty state-
ment skip. They form the entry and the exit to program regions whose subgraph
components are assumed to be executed in parallel and thus make the synchroniza-
tion points in the program explicit. For clarity, we represent ParBegin nodes and
ParEnd nodes by ellipses, and additionally we separate the component graphs of

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

274 . Jens Knoop et al.

2 21

Fig. 1. The parallel low graph G*.

parallel statements by two parallels in the figures of this article.

For a parallel flow graph G*, let Gp(G*) denote the set of all subgraphs repre-
senting a par statement. Additionally, let G¢(G'), G' € Gp(G™), denote the set of
component graphs of G’, and let G¢(G*) be an abbreviation of [J{Gc(G') |G’ €
Gp(G*) }. Note that for G € Gp(G*), G and all its component graphs G’ € G¢(G)

are single-entry/single-exit regions of G*. Let

GR (G)= { G €Gp(G) VG €Gp(G"). GCG'=G=GC"}

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Parallelism for Free . 275

and
Gpim(G*)=4 { G €Gp(G") VG €Gp(G*). G' CG=G =G}

denote the set of marimal and minimal graphs of Gp(G*), respectively.® For every
flow graph G € Gp(G*) we introduce a rank that is recursively defined by:

rank(G)= 0 ifGe g;;m (G)
J=4 N maa{ rank(G') |G' € Gp(G*) A G' C G} + 1 otherwise.

This is illustrated in Figure 2 and Figure 3, which show the set of parallel subgraphs

of rank 1 and of rank 0 of the parallel flow graph of Figure 1.

G
11

=
AN

T
N
Zg‘x::a-rb‘ 28‘ ‘

30
31 \

34

33‘

35 37

38

Fig. 2. {G|G € Gp(G*) A rank(G)=1} = {G11}.

3For parallel flow graphs G and G’ we define: G C G’ if and onlyif N C N’ and £ C F'.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

276 . Jens Knoop et al.

GOl GOZ

25 ‘ ‘ 32‘ ‘

26

27 |::|

Zg‘x::m-b ‘28‘ ‘

D[y]

il —

wos

Fig. 3. {G|G € Gp(G*) A rank(G)=0} = {Go1,Goz2}.

For every (parallel) flow graph we define the functions Nodes, start, and end,
which map their argument to its node set, its start node, and end node, respectively.
Let

Ny=ar {start(G) |G € Gp(G™)} and Nx=4{end(G)|G € Gp(G")}

denote the sets of start nodes (i.e., ParBegin nodes) and end nodes (i.e., ParEnd
nodes) of the graphs of Gp(G*). Additionally, we introduce the function pfg which
maps a node n occuring in a flow graph G € Gp(G™) to the smallest flow graph
of Gp(G™) containing it, and to G* otherwise, i.e.,

pfg(n)=a { Qj G’ € Gp(G*) |n € Nodes(G') } if n € Nodes(Gp(G*))

otherwise.

We extend pfg to graphs G € G¢(G*) by identifying pfg(G) with pfg(start(G)).
Moreover, we define a function c¢fg which maps a node n occurring in a flow
graph G € G¢(G*) to the smallest flow graph of G¢(G*) containing it, and to G*
otherwise, i.e.,

_ N{ G € Gc(G*) | n € Nodes(G') } if n € Nodes(Ge(G*))
cfo(n)= {G* otherwise.

Similar to pfg, we extend cfg to graphs G € Gp(G*) by identifying cfg(G) with
cfg(start(G)). Both for pfg and cfg the overloading of notation is harmless. In
fact, they are well defined because par statements in a program are either unrelated

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Parallelism for Free . 277

or properly nested.

Finally, for every parallel flow graph G we define an associated “sequentialized”
flow graph Gyeq, which results from G by replacing all component flow graphs of
graphs G’ € G (G) together with all edges starting or ending in such a graph
by an edge leading from start(G’') to end(G’). Note that Gjeq is free of nested
parallel statements: all components of parallel statements are usual nondetermin-
istic sequential flow graphs in the sense of Section 2. This is illustrated in Figure 4
and in Figure 5, which show the sequentialized versions of the parallel flow graphs
of Figure 1 and Figure 2, respectively.

Interleaving Predecessors. For a sequential flow graph G, the set of nodes that
might precede a node n at runtime is precisely given by the set of its static prede-
cessors predg(n). For a parallel flow graph, however, the interleaving of parallel
components must also be taken into account. Here, a node n occurring in a com-
ponent of some par statement can at runtime also be preceded by any node of
another component of this par statement. In the program of Figure 1 for example,
node 27 can dynamically be preceded not only by its unique static predecessor 26
but also by the nodes 32, 33, 36, and 37.

We denote these “potentially parallel” nodes as interleaving predecessors. This
notion can easily be defined by means of the function ParRel mapping a graph of
Ge(G*) to the set of its parallel relatives, i.e., the set of component graphs which
are executed in parallel, i.e.,

ParRel : Ge(G™) = P (Ge (G™))

is defined by

ParRel(G)=a Ge(pfg(G)\G U { ?DarRel(cfg(pfg(G_))) i)ft}ifv(viGsle GF(E)

where P denotes the power set operator. The set of interleaving predecessors of a
node n € N* is then given by the function

ItlvgPred v : N* —P(N*)
which is defined by:
Nodes(ParRel(cfg(n))) if n € Nodes(Ge(G*))

1] otherwise.

ItlvgPred 5. (n)=g4 {

For illustration see Figure 6, which shows the sets of static and interleaving prede-
cessors of the nodes 9 and 33 of Figure 1. We have:

predgs(9)={8} and ItlvgPred.(9)={12,...,17}
and
preda-(33) ={32} and ItlvgPred.(33)={25,...,31,36,37}.

The set of interleaving predecessors of a node n is a subset of the set of its
coezecutable nodes introduced by Callahan and Subhlok [1988] and considered also
by Grunwald and Srinivasan [1993b]: two nodes are coexecutable if they are inter-
leaving predecessors of each other or if they are connected via a path in the control
flow graph.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

278 . Jens Knoop et al.

41

Fig. 4. The sequentialized version G*__ of G*.

seq

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Parallelism for Free . 279

G
11
seq
21

22 35
T

|

|

|

|

|

|

|

|
33
34 36

37

Fig. 5. {Gseq|G € Gp(G*) A rank(G) =1} = {Gii,.,}-

Remark 3.1.1. The definition of interleaving predecessors as given above is a
consequence of considering assignments as atomic operations. This implies that
parallel processes always have a common and consistent memory view. Thus, our
approach even models architectures relying on strong memory consistency correctly.

Program Paths of Parallel Programs. As mentioned before, the interleaving se-
mantics of a parallel imperative programming language can be defined via a trans-
lation which reduces parallel programs to (much larger) nondeterministic programs.
However, there is also an alternative way to characterize the node sequences con-
stituting a parallel (program) path, which in spirit follows the definition of an
interprocedural program path as proposed by Sharir and Pnueli [1981]. They start
by interpreting every branch statement purely nondeterministically, which allows
to simply use the definition of finite path as introduced in Section 2. This results in
a superset of the set of all interprocedurally valid paths, which they then refine by
means of an additional consistency condition. In our case, we are forced to define
our consistency condition on arbitrary node sequences, as the consideration of in-
terleavings invalidates the first step. Here, the following notion of well-formedness
is important.

Definition 3.1.2. (G-Well-Formedness). Let G be a (parallel) flow graph, and
let p=4¢ (n1,...,n4) be asequence of nodes. Then p is G-well-formed if and only
if

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

280 . Jens Knoop et al.

B Nodes under Consideration 0 static Predecessors] interleavi ng Predecessors

Fig. 6. Static and interleaving predecessors.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Parallelism for Free . 281

(1) the projection pla,., of p onto Gy liesin Pg,,, [start(Gseq), end(Gyeq)]
(2) for all node occurrences n; € Nj of the sequence p there exists a j € {i+
1,...,q} such that
(a) nj € Nk,
(b) mn; is the successor of n; on plg — and
(

seq

c) the sequence (njt1,...,n;-1) is G'-well-formed for all G’ € Ge(pfg(ni)).

Now the set of parallel paths is defined as follows.

Definition 3.1.3. (Parallel Path). Let G* = (N*, E* s* e*) be a parallel flow
graph, and let p=g¢ (n1,...,n4) be asequence of nodes of N*. Then p is a parallel
path from

(1) s* to e* if and only if p is G*-well-formed.
(2) nq to ng ifitis a subpath of some parallel path from s* to e*.

PPg:[m,n] denotes the set of all parallel paths from m to n, and PPg«[m, n|
the set of all parallel paths from m to a (static or interleaving) predecessor of n,

defined by
PPg.[m,n[=q {(n1,...,n9) | (n1,...,ng,ng41) € PPgs[m,n]}.
3.2 Data Flow Analysis of Parallel Programs

As for a sequential program, a DFA for a parallel program is completely specified
by means of a local semantic functional

[1:N*=(C—=C)

which gives abstract meaning to every node n of a parallel flow graph G* in terms
of a function on C.

Asin the sequential case it is straightforward to extend a local semantic functional
to cover also finite parallel paths. Thus, given a node n of a parallel program G*,
the parallel version of the MOP-solution is clear, and as in the sequential case, it
marks the desired solution of the considered data flow problem:

The PMOP-Solution:
VneN*Veg€C. PMOPgs [1)(n)(co) =TT{[p](co) |p € PPg+[s*,n[}.

Referring to the nondeterministic “product program,” which explicitly represents all
the possible interleavings, would allow us to straightforwardly adapt the sequential
situation and to state a Coincidence Theorem. This, however, would not be of much
practical use, as this approach would require that one defines the MFP-solution
relative to the potentially exponential product program. Fortunately, as we will see
in the following section, for bitvector problems there exists an elegant and efficient
way out.

3.3 Bitvector Analyses

Unidirectional bitvector problems can be characterized by the simplicity of their
local semantic functional

[1:N*—=(B—DB)

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

282 . Jens Knoop et al.

which specifies the effect of a node n on a particular component of the bitvector
(see Section 4 for illustration). Here, B is the lattice ({ff,tt},M,C) of Boolean
truth values with ff C ¢t and the logical “and” as meet operation T, or its dual
counterpart with ¢t C ff and the logical “or” as meet operation IM.

Despite their simplicity, unidirectional bitvector problems are highly relevant in
practice because of their broad scope of applications ranging from simple analyses
like liveness of a variable or availability of a term to powerful program optimizations
like code motion and partial dead-code elimination (cf. Section 1).

We are now going to show how to optimize the effort for computing the PMOP-
solution for this class of problems. This requires the consideration of the semantic
domain Fp consisting of the monotonic Boolean functions B — B. Obviously, we
have:

ProrosiTiON 3.3.1.

(1) Fp simply consists of the constant functions Consty, and Constg, together
with the identity Idg on B.

(2) Fg, together with the pointwise ordering between functions, forms a complete
lattice with least element Consty and greatest element Consty,, which is closed
under function composition.

(3) All functions of Fp are distributive.

Remark 3.3.2. Note that for functions from B* to B, k > 2, monotonicity
usually does not imply distributivity, which is an essential premise of our main
result, the Parallel Bitvector Coincidence Theorem 3.3.7. Fortunately, all the local
semantic functions involved in problems like liveness, availability, very busyness,
definition-use chaining, code motion, assignment motion, partial dead-code elimi-
nation, and strength reduction are functions of Fg. In fact, we do not know of
any practically relevant bitvector problem which cannot be encoded by functions

of Fg.

The key to the efficient computation of the “interleaving effect” is based on the
following simple observation, which pinpoints the specific nature of a domain of
functions that only consists of constant functions and the identity on an arbitrary
set M.

LEMMA 3.3.3. (MAIN LEMMA). Let f; : Fs—>Fp, 1 <i<yq, ¢ € IN, be
functions from Fp to Fpr. Then we have:

Jke{l,....q}. fyo0...0fr0fi=fx AVje{k+1,...,q}. fi=Ilds.

Interference. The relevance of this lemma for our application is that it restricts
the way of possible interference within a parallel program: each possible interference
is due to a single statement within a parallel component. Combining this observa-
tion with the fact that for m € ItlugPred ;. (n), there exists a parallel path leading
to n whose last step requires the execution of m, we obtain that the potential of
interference, which in general would be given in terms of paths, is fully character-
ized by the set ItlugPreds.(n). In fact, considering the computation of universal
properties that are described by maximal fixed points (the computation of minimal

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Parallelism for Free . 283

fixed points requires the dual argument), the obvious existence of a path to n that
does not require the execution of any statement of ItlugPred 5. (n) implies that the
only effect of interference is “destruction.” This motivates the introduction of the
predicate NonDestructible defined for each node n € N* by

NonDestructible(n) <= q4 V' m € ItlugPred 5. (n). [m] € {Consty, Idg}.

Intuitively, NonDestructible indicates that no node of a parallel component de-
stroys the property under consideration, i.e., for all m € ItlvgPred . (n) holds:

[m] # Constg.

Note that only the constant function with the precomputed value of this predicate is
used in Definition 3.3.6 to model interference, and in fact, Theorem 3.3.7 guarantees
that this modeling is sufficient. Obviously, this predicate is easily and efficiently
computable. Algorithm B.1 computes it as a side result. For illustration see Figure
7, which is annotated with the local semantic functional for computing the set
of “up-safe” program points with respect to the computation “a 4+ b” (cf. Section
4.1). In this example, the predicate NonDestructible is violated for example for the
nodes 9 and 33, because they both have an interleaving predecessor (node 14 and
node 26, respectively (see Figure 6)), which is annotated with the local semantic
function Constg. On the other hand, NonDestructible for example holds for the
nodes 14 and 26, as all of their interleaving predecessors (nodes 7, ..., 11 and nodes
30, 32, 36, and 37, respectively) are annotated with Consty or Idg.

Synchronization. Besides taking care of possible interference, we also need to
take care of the synchronization required by nodes in N : control may only leave
a parallel statement after all parallel components terminated. The corresponding
information can be computed by a hierarchical algorithm that only considers purely
sequential programs. The central idea coincides with that of interprocedural analy-
sis [Knoop and Steffen 1992]: we need to compute the effect of complete subgraphs,
or in this case of complete parallel components. This information is computed
in an “innermost” fashion and then propagated to the next surrounding parallel
statement.* The following definition, which is illustrated in Section 4, describes the
complete three-step procedure:

(1) Terminate, if G does not contain any parallel statement. Otherwise, select suc-
cessively all maximal flow graphs G’ occurring in a graph of Gp(G) that do not
contain any parallel statement, and determine the effect [[G'] of this (purely
sequential) graph according to the equational system of Definition 2.2.3.1.

(2) Compute the effect [G]* of the innermost parallel statements G' of G by

B Constg if 3G’ € gc(@) [end(G') | = Constg
IGT =< Ids if VG' € Ge(G). [end(G') | = Idp
Consty otherwise.
(3) Transform G by replacing all innermost parallel statements G = (N, £, §, &)

by ({s,e},{(5,@)},5,&), and replace the local semantics of 5 and € by Idg 1
[M{[n]| n€ N} and [GT", respectively. Continue with step 1.

4 Also, in Srinivasan et al. [1993] parallel statements are investigated in an innnermost fashion.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

284 . Jens Knoop et al.

This three-step algorithm is a straightforward hierarchical adaptation of the algo-
rithm for computing the functional version of the MFP-solution for the sequential
case. Only the second step realizing the synchronization at nodes in N} needs
some explanation, which is summarized in the following lemma.

LEMMA 3.3.4. The PMOP-solution of a parallel flow graph G € Gp(G™) that
only consists of purely sequential parallel components G1, ..., Gy is given by:

Constg if 31 <i<k. [end(G;)] = Constg
PMOP(GJ[]I)(end(G)) =< Ilds if V1<i<k [end(G;)]=1ds

Consty otherwise.

Also the proof of this lemmais a consequence of the Main Lemma 3.3.3. As a single
statement is responsible for the entire effect of a path, the effect of each complete
path through a parallel statement is already given by the projection of this path
onto the parallel component containing the vital statement. Thus, in order to model
the effect (or PMOP-solution) of a parallel statement, it is sufficient to combine the
effects of all paths local to the components, a fact, which is formalized in Lemma
3.3.4.

Now the following theorem can be proved by means of a straightforward inductive
extension of the functional version of the sequential Coincidence Theorem 2.2.2.2,
which is tailored to cover complete paths, i.e., paths going from the start to the
end of a parallel statement:

THEOREM 3.3.5. (THE HIERARCHICAL COINCIDENCE THEOREM). Let G €
Gp(G*) be a parallel flow graph, and let []: N*— Fpg be a local semantic func-
tional. Then we have:

PMOP ¢ [1)(end(G)) =[G T".
After this hierarchical preprocess the following modification of the equation system
for sequential bitvector analyses leads to optimal results:

Definition 3.3.6. The functional [[J]: N* — Fp is defined as the greatest solu-

tion of the equation system given by:3

Idg if n=s"
HIn]]] = ﬂ[pfg()]]] o HI s‘tarz‘(pfg())]]] n Con‘gtNonDestructible(n) if n € N)*(

[{[m]o[m]|m € predg:(n)} Const NonDestructible(n) Otherwise.

This allows us to define the PMFPgy-solution, a fixed-point solution for the bitvec-
tor case, in the following fashion:

The PMFPgy-Solution:

5Note that [[] is the straightforward extension of the functional defined in Definition 2.2.3.1.
Thus the overloading of notation is harmless, as no reference to the sequential version is made in
this definition.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Parallelism for Free . 285

PMFPBV(G*,[K N* — Fp defined by
Vn e N* VbeB. PMFPBV(G*J[]l)(")(b) = ﬂ[n]]](b)

As in the sequential case the PMFPpy-solution is practically relevant, because it
can efficiently be computed (see Algorithm B.1 in Appendix B). The following
theorem now establishes that it also coincides with the desired PMOP-solution.

THEOREM 3.3.7. (THE PARALLEL BITVECTOR COINCIDENCE THEOREM). Let
G*=(N*,E*,s* e*) be a parallel flow graph, and let [] : N* = Fg be a local
semantic functional. Then we have that the PMOP-solution and the PMFPgy -
solution coincide, i.e.,

V'I’L S N*. PMOP(G*J[]I)(n) = PMFPBV(G*y[]I)(TL)

Proor. The proof follows the same pattern as for the known versions of the
coincidence theorem [Kam and Ullman 1977; Knoop and Steffen 1992]: induction
on the number of steps of the fixed-point iteration for computing the PMFPpy-
solution for establishing

PMOP((;*V[D= PMFPBV(G*V[) (A)
and induction on the length of a parallel path for the converse implication
PMFPBV(G*)[n= PMOP(G*J[Ik (B)

Whereas the proof of (A) is only slightly altered, the proof of (B) requires some
extra effort.

Let b € B and n € N*, and let us assume for (A) without loss of generality
that PMOP g+ [1)(n)(b) = tt. Obviously, for every statement m, which can be
executed in parallel with n, there exists a path in PPg+[s*,n[, having m as its
last component, i.e.,

PPg[s*, n[NPPg:[s*, m] £ 0.

Thus NonDestructible(n) = tt. Now the rest of the proof is the “standard induc-
tion” on the number of fixed-point iterations mentioned above [Kam and Ullman
1977; Knoop and Steffen 1992], refined to take care of the distinction between “ordi-
nary” nodes and nodes taken from N, which requires the application of Theorem
3.3.5.

For (B), we can assume without loss of generality that
PMFPBV(G*J[])(n)(b) = (it (*)

holds. In particular, this means that NonDestructible(n) = tt, i.e., none of the
statements m € TItlvgPred s, (n) satisfies [m] = Constg. Now it is the Main
Lemma 3.3.3 which guarantees that this is already sufficient to guarantee that the
standard sequential bitvector analysis is not interfered by any parallel statement.
The proof is a slightly modified version of the standard induction on the path
length:

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

286 . Jens Knoop et al.

Let p = (n1,...,ng) € PPg«[s*, n[be a parallel path. Then we must show that
[ng]o---o[ny](b) = tt.

In the case of k£ = 0 this is trivial, as only the start node s* is reachable. Thus
our assumption forces b = tt as desired.

For k > 1 we need to distinguish the “standard” cases from the case where
n € Nx. For the “standard” case, let 0 <1 < k be the index of the last step of
p that was done by a predecessor m € predgs(n), i.e., [] = [m]. Such a step
must exist, as k > 1, which excludes n = s*, and we know by induction:

PMFPBV(G*J[]I)(m)(b) = |[n1_1]] 0.--0 [[711]](b)

and therefore by monotonicity

[[m]](PMFPBV(G*,[]l)(m)(b)) = [nJo---o0 [[n1]](b)-

On the other hand, assumption (x) forces
[m(PMFPgy g+ [1)(m)(b)) = ¢t
and therefore, together, as all the n;, [+ 1 < i <k, are members of ItlvgPred ;. (n)

[nk]]o~~~o|[n1]] = {t

which completes the proof for the standard case.
Thus it remains to consider the case, where n € N%. In this case, assumption
(%) reads as follows:

tt = PMFPpv (g 1)(n)(b) = [pfo(n) " o [start(pfg(n))].

Now let 0 <! <k be the index corresponding to m = start(pfg(n)). Then we can
apply the induction hypothesis in order to obtain:

PMFPBV((;*J[])(m)(b) = [[711—1]] 0:+-0 |[”1]](b)

Now the application of Theorem 3.3.5 allows to complete the proof as in the stan-
dard case. O

Intuitively, the (sequential) Coincidence Theorem 2.2.2.2 can be read as that uni-
directional distributive data flow analysis problems allow to model the confluence
of control flow by merging the corresponding data flow informations during the
iterative computation of the MFP-solution without losing accuracy. The intuition
behind the Parallel Bitvector Coincidence Theorem 3.3.7 is the same, only the cor-
respondence between control flow and program representation is more complicated
due to the interleaving and synchronization effects.

3.4 Performance and Implementation

Our generic algorithm is based on a functional version of an MFP-solution, as it is
common for interprocedural analyses. However, as bitvector algorithms only deal
with Boolean values, proceeding argumentwise would simply require to apply a
standard bitvector algorithm twice. In particular, for regular program structures,
all the nice properties of bitvector algorithms apply. In fact, for the standard version
of Algorithm B.1 a single execution is sufficient, as we can start here with the

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Parallelism for Free . 287

same start information as the standard sequential analysis. Thus, even if we count
the effort for computing the predicate NonDestructible separately, our analysis
would simply be a composition of four standard bitvector analyses. In practice,
however, our algorithm behaves much better, as the existence of a single destructive
statement allows us to skip the analysis of large parts of the program. In fact, in
our experience, the parallel version often runs faster than the sequential version on
a program of similar size.

The same argumentation also indicates a way for a cheap implementation on top
of existing bitvector algorithms. However, we recommend the direct implementa-
tion of the functional version, which to our experience, runs even faster than the
decomposed standard version. This is not too surprising, as the functional version
only needs to consider one additional value and does not require the argumentwise
application.

4. APPLICATIONS

As mentioned before, unidirectional bitvector problems are highly relevant in prac-
tice because of their broad scope of applications ranging from simple analyses like
determining the liveness of variables or the availability of terms to powerful program
optimizations like code motion, partial dead-code elimination, assignment motion,
and strength reduction. Using the methods of Section 3, all these techniques can
now be made available for parallel programs. In this section we demonstrate this
by sketching straightforward parallel extensions of the code motion and the partial
dead-code elimination algorithms of Knoop et al. [1994a; 1994b]. We conjecture
that, like their sequential counterparts, these algorithms are unique in optimally
eliminating the partially redundant expressions and partially dead assignments in
a parallel program, respectively.

4.1 Code Motion

Code motion improves the runtime efficiency of a program by avoiding unnecessary
recomputations of values at runtime. This is achieved by replacing the original
computations of a program by temporaries that are initialized at certain program
points. For sequential programs it is well known that computationally optimal re-
sults can be obtained by placing the computations as early as possible in a program,
while maintaining its semantics [Knoop et al. 1992; 1994a]. In the following we il-
lustrate the essential steps of an algorithm for the parallel setting, which directly
evolves from the busy-code-motion (BCM) transformation of Knoop et al. [1994a],
by means of the example of Figure 1. In this example our algorithm, called the
BCMpp-transformation, is unique to achieve the optimization of Figure 11: it elim-
inates the partially redundant computations of a + b at the nodes 3, 13, 16, 19,
20, 29, 30, and 40 by moving them to the nodes 2, 15, and 27, but it does not
touch the partially redundant computations of a + b at the nodes 8 and 10, which
cannot safely be eliminated.

As in the sequential case, placing the computations as early as possible in a
program requires to compute the set of program points where a computation is
up-safe and down-safe, i.e., where it has been computed on every program path
reaching the program point under consideration, and where it will be computed

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

288 . Jens Knoop et al.

on every program continuation reaching the program’s end node.® For the ease of
presentation we here assume that the parallel statements of the argument program
are free of “recursive” assignments, i.e., assignments whose left-hand-side variable
occurs in its right-hand-side term, which can be handled as well but require a
slightly refined treatment.

The DFA-problems for up-safety and down-safety are specified by the local se-
mantic functionals [J],, and [],, where Comp and Transp are two local
predicates, which are true for a node n with respect to a computation ¢, if ¢
occurs in the right-hand-side term of the statement of n, and if no operand of ¢ is
modified by it, respectively.

Consty if Transp(n) A Comp(n)
[n],, =d Idg if Transp(n) A—Comp(n)
Constg otherwise

Consty if Comp(n)
[nly =a Idg if =Comp(n) A Transp(n)
Constg otherwise

Note that these are the very same functionals as in the sequential case because
the effect of interference is completely taken care of by the corresponding versions of
the predicate NonDestructible, which are automatically derived from the definitions
of the local semantic functionals. In the literature the definitions of [n],, and
[n], are usually given in the following equivalent form:

Vne N*VbeB. [n],,(b)=4 (b V Comp(n)) A Transp(n)
and
Vne N*VbeB. [n], (b)=4 Comp(n) V (Transp(n) A b).

The functionals for up-safety and down-safety can directly be fed into the generic
Algorithm B.1 computing the PMFP-solutions of these two properties. For the
predicate up-safe this is illustrated in some detail in Figures 7, 8, and 9, which
illustrate the hierarchical preprocess for computing the semantics of the parallel
statements of G*, i.e., of the subgraphs G € Gp(G*). Figure 7 shows the flow
graph of Figure 1 enhanced with the local semantic functions for up-safety with
respect to the computation a + b. In the first step the hierarchical preprocess
computes the semantics of all par statements of rank 0. The corresponding results
are displayed in Figure 8. Subsequently, these results are used for computing the
semantics of the single par statement of rank 1, which is illustrated in Figure 9.

After the semantics of all subgraphs G € Gp(G*) with respect to up-safety and
down-safety have been computed, the PMFPpy-solution for these two properties
can be computed essentially as in the sequential case. The result of the corre-
sponding fixpoint computations is illustrated in Figure 10, which shows the set of

6Up-safety and down-safety are also known as availability and anticipability (very busyness),
respectively.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Parallelism for Free . 289

Fig. 7. G* with the local semantic functional for up-safety []

wrt a + b.

us

up-safe and down-safe program points of G*, and the set of program points, where
a placement of a + b is earliest, 1.e., where a computation has to be inserted and
where an original computation of a 4+ b must be replaced.

As in the sequential case, down-safe start nodes are “earliest,” as well as other
down-safe but not up-safe nodes which either possess an “unsafe” predecessor (see
node 2) or a predecessor modifying an operand of the computation under consid-
eration (see nodes 15 and 27).

After inserting an initialization statement at the entry of each earliest node, every
original computation occurring in a safe node is replaced by the corresponding tem-
porary, as illustrated in Figure 10. Note that the replacement condition is stronger
than in the sequential setting, where all original computations are replaced. The

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Jens Knoop et al.

GOl - G01
=) =
7 l?l 12
T 14
o l?l #l 15 = Consty
(s | [Em]®)
1 QA F 17
7S

destructiv =tt
& G,)

37

Fig. 8.
G
11
— =4
B 2
2 F
“ @
I
|
I
! = Consty
I
|
v
3 ?
* R
=5
destructive(G11)=tt
Fig. 9.

24

destructi =tt
ructive(Goz)

= Consty

2]

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

= Consty

[
(]

dg

= Constff

Up-safety: After the first iteration of the outermost for-loop of GLOBEFF.

Up-safety: After the second iteration of the outermost for-loop of GLOBEFF.

Parallelism for Free . 201

point here is that in the sequential setting the initialization of the temporaries at
the “earliest” computations points guarantees that all paths from the start node of
the program reaching a node with an original computation go through an initial-
ization site of the temporary which is not followed by a modification of one of the
operands of the computation under consideration. This, however, can be violated in
the parallel setting because of interference between parallel components. In Figure
10 for example, the nodes 8 and 10 are not safe because of the possibly interfering
statement at node 14.

Figure 11, finally, shows the promised result of the BCMpp-transformation for
the program of Figure 1.

4.2 Partial Dead-Code Elimination

Intuitively, an assignment occurrence in a program is dead if on every program con-
tinuation starting at the assignment under consideration and reaching the end node
every use of the assignment’s left-hand-side variable is preceded by a redefinition
of it. It is called partially dead, if it is dead along some program continuations. In
Knoop et al. [1994b] it has been shown how to eliminate partially dead assignments
in a sequential program by first moving them as far as possible in the direction of
the control flow and second by eliminating all dead assignment occurrences. Opti-
mal results can be obtained by repeating this two-step procedure until the program
stabilizes, which is necessary in order to capture the second-order effects of partial
dead-code elimination.

The central components of the complete algorithm are the procedures for assign-
ment sinking and the detection of dead variables, and below we present the local
semantic functionals [], and [],, of the underlying unidirectional bitvector
DFA-problems for assignment sinking and detecting dead variables, respectively,
where Used, Mod, LocDelay, and LocBlocked are local predicates of nodes. The
predicates Used and Mod are true for a node n, if the variable under consideration
occurs on the right-hand side and the left-hand side of the statement of node n,
respectively. LocDelay holds for a node, if it contains an occurrence of the assign-
ment pattern under consideration whose execution can be postponed to the end of
this node, and LocBlocked, finally, is true, if the sinking of the assignment pattern
under consideration is blocked by the statement of the argument node:

Consty if = Used(n) A Mod(n)
[n]lu; =a ldg if =(Used(n)V Mod(n))

Constg otherwise

Consty if LocDelay(n)
[n]y; =a Idp if —~(LocDelay(n) V LocBlocked (n))
Constg otherwise

or equivalently
Voe B. [n],;(b)=a ~Used(n) A (b V Mod(n))
and
VboeB. [n],;(b)=4 LocDelay(n) V (b A ~LocBlocked(n)).

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

292 . Jens Knoop et al.

24

[] Down-Safe [up-safe B Ealiest B Replace

Fig. 10. Down-safe, up-safe, earliest, and replacement program points of a + b.

5. CONCLUSIONS

We have shown how to construct for parallel programs with shared memory opti-
mal analysis algorithms for unidirectional bitvector problems that are as efficient as
their purely sequential counterparts and which can easily be implemented. At the
first sight, the existence of such algorithms is rather surprising, as the interleaving
semantics underlying our programming language is an indication for an exponential

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Parallelism for Free . 293

RE

Fig. 11. The result of the BCMpp-transformation.

effort. However, the restriction to bitvector analysis constrains the possible ways
of interference in such a way that we could construct a generic fixed-point algo-
rithm that directly works on the parallel program without taking any interleavings
into account. The algorithm is implemented on the Fizpoint Analysis Machine of
Steffen et al. [1995]. A variant of the code motion transformation of Section 4
is implemented in the ESPRIT project COMPARE number 5933 [Vollmer 1994;
1995].

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

294 . Jens Knoop et al.

APPENDIX
A. COMPUTING THE MFP-SOLUTION
Algorithm A.1. (Computing the MFP-Solution).

Input. A flow graph G = (N, E,s,e), and a local semantic functional [] :
N — F¢, where F¢ denotes the set of monotonic functions on a complete lattice C.
Additionally, a function fj,;: € F¢, which reflects the assumptions on the context
in which the procedure under consideration is called. Usually, f;,;+ 1s given by the
identity Ide on C.

Qutput. An annotation of G with functions [[n] € F¢, n € N, representing the
greatest solution of the equation system of Definition 2.2.3.1. After the termination
of the algorithm the functional [[]| satisfies:

Vné&N. HITL]]]:MFP(GJ]I)(n) C MOP(GJ[]I)(n)

Remark. The function Constt, which maps every argument to the greatest
element T of C, denotes the “universal” function which is assumed to “contain”
every other function of Fe.

BEGIN MFP(G,[1, finit) END.
where

PROCEDURE MFP (G = (N, E,s, e) : Sequential FlowGraph;
[1:N—=Fe¢ : LocalSemantic Functional;
fstart : FCL
VAR f: Fg;
BEGIN
(Initialization of the annotation array [[]| and the variable workset)
FORALL n € N\{s} DO [[n]:= Constt OD;
[lIS]]] = .fstart;
workset :={n|n=sV [n]C ConstT };

(Iterative fized-point computation)
WHILE workset # ¢ DO
LET n € workset

BEGIN
workset := workset\{n };
fi=Inlolln];

FORALL m € succg(n) DO
IF [m] 3 f THEN [[m]:= f; workset:= workset U{m } FI
0D
END
oD
END.

B. COMPUTING THE PMFPgv-SOLUTION
Algorithm B.1. (Computing the PMFPgy -Solution).

Input. A parallel flow graph G* = (N*, E*,s*,e*), a local semantic functional
[1: N*—= Fg, afunction fi,;: € Fg, and a Boolean value b;n;: € B, where fini

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Parallelism for Free . 295

and b;,;; reflect the assumptions on the context in which the procedure under con-
sideration is called. Usually, fin;: and b;,;e are given by Idg and ff, respectively.

Output. An annotation of G* with functions [G]" € Fs, G € Gp(G*), rep-
resenting the semantic functions computed in the second step of the three-step
procedure of Section 3.3, and with functions [[n]] € Fg, n € N*, representing the
greatest solution of the equation system of Definition 3.3.6. After the termination
of the algorithm the functional [] satisfies:

Vn e N*. [n]l= PMFPgy g [7)(n) = PMOP G- [1)(n).

Remark. The global variables [[G,.q " € F5, G € G (G*), store the global effect
of G during the hierarchical computation of the PMFPpy-solution. The global
variables destructive(GsEq), G € Gc(G*), store whether G contains a node n with
[n]= Constg. These variables are used to compute the value of the predicate
NonDestructible of Section 3.3.

BEGIN
(Synchronization: Computing [[GT"* for all G € Gp(G*))
GLOBEFF(G*,[]);

(Interleaving: Computing the PMFPgy-Solution [n]] for all n € N*)
PMFPgv(G*,[1 finit, binit)
END.

where

PROCEDURE GLOBEFF (G = (N, E,s,e) : Parallel FlowGraph;
[1:N=Fs : Local Semantic Functional);
VAR 1 : integer;
BEGIN
FOR. ::=0 TO rank(G) DO
FORALL G' € {G"|G" € Gp(G) A rank(G")=1} DO
FORALL G" = (N" E" s",e") € {GY,|G" € Gc(G")} DO
LET Vne N". [n]' =
Ids T ConStV GEGe(pfa(n)). —destructive(G) if n¢ [V])tl
Mg(n)]]]* if ne N
[~] otherwise
BEGIN
destructiue(G”) = (| {n e N" | [[n]]” = Consty } | >1);
MFP(G",[1", Ids);
[G" T == end(G")]

END
OD;
Consty if 3G" € Ge(G'). [GY., 1" = Consty
[G'T" = { Idp if YG" € Ge(GN. [I'S'eq T =Ids
Consty;; otherwise
(0] D]
oD

END.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

296 . Jens Knoop et al.

PROCEDURE PMFPgv (G = (N, E,s, e) : Parallel FlowGraph,;

[1:N—Fg : LocalSemanticFunctional;
fstart :]:B7
destructive : B);
VAR f: Fpg;
BEGIN
IF destructive THEN FORALL ne N DO |]In]]]:= Consty OD
ELSE
(Initialization of the annotation array [[]| and the variable workset)
FORALL n € Nodes(Gseq)\{8} DO [n]:= Const;;y OD;
[lIS]]] = fstarﬁ
workset :={n € Nodes(G.q) | n € Ny U{s} V[n]= Constg };

({terative fized-point computation)
WHILE workset # (¢ DO
LET n € workset
BEGIN
workset := workset\{ n };
IF n e N\Ny

THEN
j=TnloLnl
FORALL m e succg(n) DO
IF [m]2f
THEN [[m]:= f; workset := worksetU{m } FI
OD
ELSE
FORALL G’ € Ge(pfg(n)) DO
PMFPv (G, 1,Tn1, > destructive(G"))
G €Ge(pla(n))\{G'}
OD;

f=1pfg(n) T o[n];
IF [end(pfg(n))]2 f
THEN
[end(pfg(n)) I:= f;
workset := workset U{ end(pfg(n)) } FI
FI
END
oD
FI
END.

Let [[n]]]alg, n € N*, denote the final values of the corresponding variables after
the termination of Algorithm B.1, and [[n]], n € N*, the greatest solution of the
equation system of Definition 3.3.6, then we have:

TugoreM B.2. Vne N*. [n],, =[n]

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Parallelism for Free . 297

ACKNOWLEDGMENTS

The authors would like to thank Marion Klein and the anonymous referees for their
constructive comments.

References

CALLAHAN, D. AND SUBHLOK, J. 1988. Static analysis of low-level synchronization. In Proceed-
ings of the 158 ACM SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging
(WPDD’88). ACM SIGPLAN Notices, vol. 24,1. Madison, Wisconsin, 100 — 111.

CHow, J.-H. AND HARRISON, W. L. 1992. Compile time analysis of parallel programs that share
memory. In Conference Record of the 19" ACM Symposium on Principles of Programming
Languages (POPL’92). Albuquerque, New Mexico, 130 — 141.

CHow, J.-H. AND HARRISON, W. .. 1994. State space reduction in abstract interpretation
of parallel programs. In Proceedings of the International Conference on Computer Lan-
guages (ICCL’94). Toulouse, France, 277 — 288.

CousoT, P. AND CousoT, R. 1977. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference Record
of the 4" ACM Symposium on Principles of Programming Languages (POPL’77). Los
Angeles, California, 238 — 252.

CousoT, P. AND CousoT, R. 1984. Invariance proof methods and analysis techniques for parallel
programs. In Automatic Program Construction Techniques, A. W. Biermann, G. Guiho,
and Y. Kodratoff, Eds. Macmillan Publishing Company, Chapter 12, 243 — 271.

DHAMDHERE, D. M. 1989. A new algorithm for composite hoisting and strength reduction
optimisation (4 corrigendum). International Journal of Computer Mathematics 27, 1 — 14
(+ 31 - 32).

DHAMDHERE, D. M., RosEN, B. K., AND ZADECK, F. K. 1992. How to analyze large programs
efficiently and informatively. In Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI’92). ACM SIGPLAN Notices, vol.
27,7. San Francisco, California, 212 — 223.

DRECHSLER, K.-H. AND STADEL, M. P. 1993. A variation of Knoop, Riithing and Steffen’s lazy
code motion. ACM SIGPLAN Notices 28, 5, 29 — 38.

Duri, S., Buy, U., DEVARAPALLI, R., AND SHATZ, S. M. 1993. Using state space methods
for deadlock analysis in ada tasking. In Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis (SSTA’93). Software Engineering Notes, vol.
18,3. 51 — 60.

DwvYER, M. B. AND CLARKE, L. A. 1994. Data flow analysis for verifying properties of con-
current programs. In Proceedings of the 2"¢ ACM SIGSOFT Symposium on Foundations
of Software Engineering (SFSE’94). Software Engineering Notes, vol. 19,5. New Orleans,
Lousiana, 62 — 75.

GODEFROID, P. AND WOLPER, P. 1991. Using partial orders for the efficient verification of
deadlock freedom and safety properties. In Proceedings of the 87% International Work-
shop on Computer Aided Verification (CAV’91). Lecture Notes in Computer Science 575.
Springer-Verlag, Aalborg, Denmark, 332 — 342.

GRUNWALD, D. AND SRINIVASAN, H. 1993a. Data flow equations for explicitely parallel programs.
In Proceedings of the 4" ACM SIGPLAN Symposium on Principles & Practice of Parallel
Programming (PPOPP’93). ACM STGPLAN Notices, vol. 28,7. San Diego, California, 159
— 168.

GRUNWALD, D. AND SRINIVASAN, H. 1993b. Efficient computation of precedence information in
parallel programs. In Proceedings of the 6" International Conference on Languages and
Compilers for Parallel Computing (LCP(C’93). Lecture Notes in Computer Science 768.
Springer-Verlag, Portland, Oregon, 602 — 616.

HecHT, M. S. 1977. Flow Analysis of Computer Programs. Elsevier, North-Holland.

JosHI, S. M. AND DHAMDHERE, D. M. 1982a. A composite hoisting-strength reduction trans-
formation for global program optimization — part 1. International Journal of Computer
Mathematics 11, 21 — 41.

JosHI, S. M. AND DHAMDHERE, D. M. 1982b. A composite hoisting-strength reduction trans-
formation for global program optimization — part II. International Journal of Computer

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

298 . Jens Knoop et al.

Mathematics 11, 111 — 126.

Kawm, J. B. AND ULLMAN, J. D. 1977. Monotone data flow analysis frameworks. Acta Informat-
jca 7, 309 — 317.

Kinparn, G. A. 1972. Global expression optimization during compilation. Tech. Rep. No. 72-
06-02, University of Washington, Computer Science Group, Seattle, Washington. Ph.D.
dissertation.

Kinparn, G. A. 1973. A unified approach to global program optimization. In Conference Record
of the 15¢ ACM Symposium on Principles of Programming Languages (POPL’73). Boston,
Massachusetts, 194 — 206.

Knoor, J., RUTHING, O., AND STEFFEN, B. 1992. Lazy code motion. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI’92).
ACM SIGPLAN Notices, vol. 27,7. San Francisco, California, 224 — 234.

KNoop, J., RUTHING, O., AND STEFFEN, B. 1993. Lazy strength reduction. Journal of Pro-
gramming Languages 1, 1, 7T1-91.

Knoor, J., RUTHING, O., AND STEFFEN, B. 1994a. Optimal code motion: Theory and practice.
ACM Transactions on Programming Languages and Systems 16, 4, 1117-1155.

Knoor, J., ROUTHING, O., AND STEFFEN, B. 1994b. Partial dead code elimination. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI'94). ACM SIGPLAN Notices, vol. 29,6. Orlando, Florida, 147 — 158.

KNooP, J., RUTHING, O., AND STEFFEN, B. 1994c. A tool kit for constructing optimal interpro-
cedural data flow analyses. Tech. Rep. MIP-9413, Fakultat fiir Mathematik und Informatik,
Universitiat Passau, Germany. 26 pages.

KnooP, J., RUTHING, O., AND STEFFEN, B. 1995. The power of assignment motion. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI’95). ACM SIGPLAN Notices, vol. 20,6. La Jolla, California, 233 —
245.

KNooOP, J. AND STEFFEN, B. 1992. The interprocedural coincidence theorem. In Proceedings
of the 4" International Conference on Compiler Construction (CC’92). Lecture Notes in
Computer Science 641. Springer-Verlag, Paderborn, Germany, 125 — 140.

KNoop, J. AND STEFFEN, B. 1993. Efficient and optimal bit-vector data flow analyses: A
uniform interprocedural framework. Tech. Rep. 9309, Institut fiir Informatik und Praktische
Mathematik, Christian- Albrechts-Universitiat Kiel, Germany. 22 pages.

Knoop, J., STEFFEN, B., AND VOLLMER, J. 1995a. Parallelism for free: Bitvector analyses
— no state explosion! In Proceedings of the 1°' International Workshop on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’95). Lecture Notes in
Computer Science 1019. Springer-Verlag, Aarhus, Denmark, 264 — 289.

Knoop, J., STEFFEN, B., AND VOLLMER, J. 1995b. Parallelism for free: Efficient and opti-
mal bitvector analyses for parallel programs. In Preliminary Proceedings of the 15¢ Inter-
national Workshop on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’95). BRICS Notes Series NS-95-2. Aarhus, Denmark, 319 — 333.

LoNG, D. AND CLARKE, L. 1991. Data flow analysis of concurrent systems that use the ren-
dezvous model of synchronization. In Proceedings of the ACM SIGSOFT Symposium on
Testing, Analysis, and Verification (TAV’91). Software Engineering Notes, vol. 16. Victo-
ria, British Columbia, 21— 35.

MarrioT, K. 1993. Frameworks for abstract interpretation. Acta Informatica 30, 103 — 129.

McDoweLL, C. E. 1989. A practical algorithm for static analysis of parallel programs. Journal
of Parallel and Distributed Computing 6, 3, 513 — 536.

MIDKIFF, S. P. AND PADUA, D. A. 1990. Issues in the optimization of parallel programs. In
Proceedings of the International Conference on Parallel Processing (ICPP’90). Vol. II. St.
Charles, Illinois, 105 — 113.

MOREL, E. 1984. Data flow analysis and global optimization. In Methods and tools for compiler
construction, B. Lorho, Ed. Cambridge University Press, 289 — 315.

MOoREL, E. AND RENVOISE, C. 1979. Global optimization by suppression of partial redundancies.
Communications of the ACM 22, 2, 96 — 103.

MoREL, E. AND RENVOISE, C. 1981. Interprocedural elimination of partial redundancies. In
Program Flow Analysis: Theory and Applications, S. S. Muchnick and N. D. Jones, Eds.
Prentice Hall, Englewood Cliffs, New Jersey, Chapter 6, 160 — 188.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

Parallelism for Free . 299

MUCHNICK, S. S. AND JoNES, N. D., Eds. 1981. Program Flow Analysis: Theory and Applica-
tions. Prentice Hall, Englewood Cliffs, New Jersey.

SHARIR, M. AND PNUELI, A. 1981. Two approaches to interprocedural data flow analysis. In
Program Flow Analysis: Theory and Applications, S. S. Muchnick and N. D. Jones, Eds.
Prentice Hall, Englewood Cliffs, New Jersey, Chapter 7, 189 — 233.

SRINTVASAN, H., Hook, J., AND WOLFE, M. 1993. Static single assignment form for explicitly
parallel programs. In Conference Record of the 20" ACM Symposium on Principles of
Programming Languages (POPL’93). Charleston, South Carolina, 260 — 272.

SRINTVASAN, H. AND WoLFE, M. 1991. Analyzing programs with explicit parallelism. In Pro-
ceedings of the 4" International Conference on Languages and Compilers for Parallel
Computing (LCPC’91). Lecture Notes in Computer Science 589. Springer-Verlag, Santa
Clara, California, 405 — 419.

STEFFEN, B., CrLassEN, A., KLrIN, M., KNoOOP, J., AND MARGARIA, T. 1995. The fixpoint-
analysis machine. In Proceedings of the 6'" International Conference on Concurrency The-
ory (CONCUR’95). Lecture Notes in Computer Science 962. Springer-Verlag, Philadelphia,
Pennsylvania, 72 — 87.

VALMARI, A. 1990. A stubborn attack on state explosion. In Proceedings of the 2"¢ Interna-
tional Workshop on Computer Aided Verification (CAV’90). Lecture Notes in Computer
Science 531. Springer-Verlag, New Brunswick, New Jersey, 156 — 165.

VOLLMER, J. 1994. Data flow equations for parallel programs that share memory. Tech. Rep.
2.11.1 of the ESPRIT Project COMPARE number 5933, Fakultat fiir Informatik, Univer-
sitat Karlsruhe, Germany.

VOLLMER, J. 1995. Data flow analysis of parallel programs. In Proceedings of the IFIP WG 10.8
Working Conference on Parallel Architectures and Compilation Techniques (PACT’95).
Limassol, Cyprus, 168 — 177.

WOLFE, M. AND SRINIVASAN, H. 1991. Data structures for optimizing programs with explicit
parallelism. In Proceedings of the 15% International Conference of the Austrian Center for
Parallel Computation. Lecture Notes in Computer Science 591. Springer-Verlag, Salzburg,
Austria, 139 — 156.

Received October 1994, revised August 1995; accepted October 1995

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996.

