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Abstract

Gentle defined by F.W. Schroer [Schréer 89] is a compiler description language in the tradition of logic program-
ming [Clocksin ® al 84] and two level grammars [Fisker ¢ al 75, Koster 71, Watt 74]. It provides a common
notation for high level description of analysis, transformation, and synthesis. A tool has been implemented to
check the wellformedness of Gentle descriptions, and to generate efficient compilers. Gentle replaces a variety
of special purpose languages by a general calculus: Horn logic.

The language, a programming environment, and a tutorial are presented in this paper.
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Preface

Gentle defined by F.W. Schréer [Schroer 89] is a compiler description language in the tradition of logic pro-
gramming and two level grammars. It provides a common notation for high level description of analysis,
transformation, and synthesis. Compilation is often viewed as a process translating the source text into a se-
quence of intermediate languages, until the desired output is synthesized. These intermediate languages may be
viewed as terms, and Gentle offers a simple and efficient way to transform these terms (intermediate languages).
These transformations are described in a declarative way using predicates. Due to the special nature of the task
(describing compilers) Horn logic as Gentle’s foundation is modified in several ways: Gentle is a typed language
and the data flow inside the predicates is fixed. Several kinds of predicates are offered for different jobs during
compilation. It is restricted compared to Prolog in its backtracking behaviour and its pattern matching rules.
Besides the specification of terms and rules transforming them, the concrete syntax of the context free source
languages is declared using the same declarative notation. This grammar specification is used to generate a
parser for the language. Output of the system is generated by side effects caused by predicates.

A tool! has been implemented that checks the wellformedness of a Gentle specification and generates very fast
compilers. The language Gentle and a supporting tool were designed and implemented by F.W. Schréer in
1989 and published in [Schréer 89], which is a comparison study of three compiler generation tools. Starting
from Schroer’s first implementation of a Gentle tool, the Gentle programming environment using the scanner
generator rex [Grosch 87] the parser generator lalr [Vielsack 88] (instead of the initially used yacc) has been
implemented. It provides a library containing often used predicates; better error handling etc. has been
implemented. Measurements of the speed of Gentle and the generated programs are given in [Vollmer 91b].
The paper is structured in the following way: First in chapter 1 the Gentle language is presented. The next
chapter gives the user manual and a description of the library. Chapter 3 is a tutorial of Gentle implementing
a program interpreter. The appendix contains the UNIX manual page entry for the usage of the Gentle tool,
and a Gentle syntax summary.

Finally, I want to express my special thanks to FriWi Schroer.

IThe current version of Gentle is: 3.9 August 25, 1992



Chapter 1

Gentle Language Reference Manual

1.1 Introduction

The chapter is structured in the following way: First in section 1.2 a simple Gentle specification is presented,
which solves constant folding. Section 1.3 informally introduces the other languages constructs. Section 1.4
gives some general information. The next section defines Gentle. In section 1.7 it is shown how a typical target
specification looks like. In section 1.8 Gentle is related to Prolog. The Gentle syntax is summarized in the
appendix C.

1.2 A simple example

1.2.1 Types, terms, and action predicates

This simple example shows the methods of Gentle to describe a term transformation, which is the main point
of Gentle. The exercise is to fold constants, i.e. to evaluate integer expressions during compilation as far as
possible. The example source language consists of binary integer expressions, identifiers for integer variables,
and integer constants.

These integer expressions are represented as Gentle terms. In Gentle, all terms are explicitly typed. Here the
type of those terms is called EXPR, which may be either a constant, an integer variable, or a binary operation on
EXPR terms. The integer constants are represented by terms of type INT and identifiers by terms of type IDENT,
which are declared in the Gentle library. Terms of type OP denote the kind of the operation.

EXPR = const (INT), -- integer constants
var (IDENT), -- access of an integer variable
binary (0P, EXPR, EXPR).

0P = plus, minus, mult, div.

Terms are formed using functors, terms and term variables in the usual way. The type of the term variable is
derived from its context.

The source expression a + 3 is represented by binary (plus, var (a), const (3)). In the terms const (N)
and binary (plus, X, Y), the term variables are N,X,Y; plus is just a term, having no sub—terms. Such terms
are called constant terms. a, 3 are constant terms of type IDENT and INT, respectively.

The term transformation is specified by predicates. As usual a predicate is defined as a disjunction of Horn
clauses: clause; ...clause,. A clause has a head and a tail. The tail is a possibly empty list of literals. The
head and each literal may have input and output parameters, partioned by the arrow symbol, which specify the
data flow of the parameters:

head (input; -> outputy) : literal; (input; -> output;)

literal,, (input,, -> output,,).

Such a clause is an implication, where the hypothesis is formed as a conjunction of tail literals, and the conclusion
is given by the head. For each literal there must be a head of a clause with the same name. This implication
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may be read as “if literal; is true and literal, is true ...then that clause is true”. The entire predicate is
true, if at least one of its clauses is true.

The process of term transformation may be viewed as the proof of a predicate. If a proof exists, the input—output
relation holds, or with other words: the input term is transformed to the output term.

The task of our example is to evaluate statically as much of an expression as possible. Input is an expression tree
(i.e. term), which should be transformed again into an expression tree (i.e. term). For example: a + (3 + 4)
is represented as: binary (plus, var (a), binary (plus, const(3), const (4))) should be transformed
to a+7 or binary (plus, var (a), const (7)). The idea for solving this problem is first to fold the children
of the binary term and then to apply the operator to the folded child terms. The predicates below specify this:

’ACTION’ fold (EXPR -> EXPR).
fold (const (N) -> const (N)):.
fold (var (X) -> var (X)):.
fold (binary (Op, E1, E2) -> Result):
fold (E1 -> R1)
fold (E2 -> R2)
eval (binary (Op, R1, R2) -> Result).

ACTION’ eval (EXPR -> EXPR).

eval (binary (plus, const (N1), const (N2)) -> const (N1 + N2)):.
eval (binary (minus, const (N1), const (N2)) -> const (N1 - N2)):.
eval (binary (mult, const (N1), const (N2)) -> const (N1 * N2)):.
eval (binary (div, const (N1), comnst (N2)) -> comst (N1 / N2)):.
eval (E -> E):.

Gentle keywords are “enclosed” by apostrophes to distinguish them from Gentle identifiers. For each predicate
a signature is declared, specifying the predicate name, the type of input and output terms, and the kind of the
predicate, here action predicates. Both predicates have EXPR terms as input and output parameters. The fold
predicate specifies some kind of recursion over terms. The first two fold clauses are the base of that recursion,
and mean that constants and variables are not changed. The type of the term variables N and X derived from
the context are INT and IDENT respectively. Note that the tails of these clauses are empty. The third fold
clause folds the child terms E1, E2 of binary and passes the result terms as parameter to the eval predicate.
Which of the clauses is selected depends on the form of the input term. This selection is performed by matching
the actual and formal parameters of the predicate. For example if the input term of the eval predicate has the
form binary (plus, const (N1), const (N2)) then the first eval clause is selected, and the output term
has the form const (N1 + N2). If the term has a form, not so specific as given in the first four eval clauses,
the last clause matches always, because the term variable E matches with all kinds of EXPR terms.

For some term types, the so called opaque types, Gentle interprets the terms as integers, and provides integer
arithmetic on them. In the term N1 + N2 above, the fact that N1 and N2 are term variables of the opaque type
INT, is derived from their context. Hence, N1 + N2 is interpreted by Gentle as an integer expression with integer
variables. When this term is processed, the integer value of N1 + N2 is computed and used as a constant term
of type INT.

1.2.2 Grammar specification, token, and nonterminal predicates

Now the question arises, how the terms are constructed initially, or the other way round, what is the input of
that constant folding program. As said before, a Gentle specification uses a context free grammar to describe
the input language of the target program. When a sentence of the input language is read (parsed), an internal
representation of the sentence is constructed. The context free grammar and the construction process are
specified also using terms and predicates.

Two new kinds of predicates for specifying the grammar are introduced: token predicates and nonterminal
predicates. Both predicate kinds may have at most one output parameter and no input parameters. The tokens
are “produced” by a scanner implemented outside of Gentle, hence there are no clauses for token predicates.
The clauses of the nonterminal predicate may be read as production rules of the context free grammar. When
such a production rule is reduced by the parser, the action predicates following the tokens or nonterminals of
the production’s right hand side, and the term construction of the output parameter are performed. For the
example above the grammar specification looks like:
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’TOKEN’ PLUS.

’TOKEN’ MINUS.

’TOKEN’ MULT.

’TOKEN’ DIV.

’TOKEN’ LEFTPAR.

’TOKEN’ RIGHTPAR.

>TOKEN’ NUMBER (-> INT).
’TOKEN’ IDENTIFIER (-> IDENT).

’NONTERM’ Root.

Root : Expr (-> E)
print_EXPR (E)
fold (E -> FoldedExpr)
print_EXPR (FoldedExpr) .

’NONTERM’> Expr (-> EXPR).

Expr (-> E) : Term (-> E) .

Expr (-> binary (plus, E1, E2)) : Expr (-> E1) PLUS Term (-> E2)
Expr (-> binary (minus, E1, E2)): Expr (-> E1) MINUS Term (-> E2)

NONTERM’ Term (—> EXPR).

Term (-> E) : Factor (-> E)

Term (-> binary (mult, E1, E2)) : Term (-> E1) MULT Factor (-> E2)
Term (-> binary (div, E1, E2)) : Term (-> E1) DIV Factor (-> E2)

’NONTERM’ Factor (-> EXPR).

Factor (-> const(N)): NUMBER (-> N)

Factor (-> var(X)) : IDENTIFIER (-> X)

Factor (-> E) : LEFTPAR Expr (-> E) RIGHTPAR .

Root is the root symbol of the context free grammar. The Root clause may be read as “parse an expression,
print it, fold it, and print the folded expression”, where the print _EXPR predicate is defined at another place.

1.3 Introduction of other Gentle constructs

1.3.1 Global variables and condition predicates

First global variables and another kind of predicate are presented. Global variables make it easy to maintain
global information for example a list of all identifiers, used in a program. The following program fragment
defines such a list of identifiers having type IDENTS.

Using VAR’ declares a global variable, having the type IDENTS and name All1Tdents. A value is assigned to a
global variable using the special predicate Variable <- Term while the value is used by Variable -> Term or
writing the variable on a using position.

The action predicate Insert inserts an identifier into that list, only if it is not already contained in it. A
condition predicate is used to test a condition over terms it may fail, or succeed. Action predicates are not
allowed to fail. If IsContained fails, when called from the first Insert rule, the second Insert rule is tried,
which does the actual inserting. Or more general, if in clause C of predicate P the call of a tail predicate P’
fails, the entire clause C fails, and the next clause of P is tried. If there is no next clause of P, then P itself fails.

IDENTS = idl (IDENT, IDENTS), nil .

VAR’ IDENTS AllIdents.

ACTION’ Insert (IDENTS, IDENT).

Insert (Ids, Id): IsContained (Id, AllIdents)

Insert (Ids, Id): AllIdents <- idl (Id, Ids) .

CONDITION’ IsContained (IDENT, IDENTS).
IsContained (Id1, idl (Id2, Ids)): Equal (Id1l, Id2) .
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-— When condition Equal succeeds, IsContained succeeds.

IsContained (Id1, idl (Id2, Ids)): IsContained (Idi, Ids)
-- When condition IsContained (of the tail) succeeds, IsContained succeeds.

—-- If the empty list (nil) is reached, the predicate fails, because
-- there is no rule for that case.

1.3.2 Dynamic global tables

A generalization of global variables is the global table concept. A global table is something like an array in
common imperative languages, except, that space for entries is provided dynamically. Entries of the table are
accessed using a key.

This concept may be used to represent graphs with Gentle, which is not possible using terms only. The following
example, shows a graph marking algorithm to compute a minimal spanning tree for a graph and a given root
node. The graph is represented as a table of nodes, each node is a tuple, consisting of a mark field, a field for
the information stored in the graph, and a field for each successor. The number of successors of a node has a
fixed upper bound (in this example four). The following program fragment shows the usage of the language
constructs:

NODEATTR =
node (Marked : BOOLEAN, -- true: marks a node as visited
Info . INFO, -— user defined information
Succl : NODE, Succ2 : NODE, Succ3 : NODE, Succ4 : NODE),
nil -- represent the ‘‘empty’’ successor

’TABLE’ NODEATTR Graph [NODE].

MST = -- terms constructing the minimal spanning tree
mst (Info : INFO, Succl : MST, Succ2 : MST, Succ3 : MST, Succ4 : MST),
nil

’ACTION’ new (-> NODE).

new (-> Node) : ’KEY’ NODE Node.

ACTION’ define (NODE, INFO, NODE, NODE, NODE, NODE).

define (Node, Info, Succl, Succ2, Succ3, Succ4d)
Graph [Node] <- node (false, Info, Succl, Succ2, Succ3, Succ4)
-— the node is marked as "unvisited", i.e. with the term "false"

?ACTION’ ComputeMst (NODE -> MST).

ComputeMst (nil -> nil): . -- this node is the empty node
ComputeMst (Root -> nil): -- this node is marked
Graph [Root] -> node (true, Info, Succl, Succ2, Succ3, Succ4d)

ComputeMst (Root -> mst (Info, Mstl, Mst2, Mst3, Mst4)): -- this node is unmarked
Graph [Root] -> node (false, Info, Succl, Succ2, Succ3, Succ4)
Graph [Root] <- node (true, Info, Succl, Succ2, Succ3, Succ4)
—-- mark this node and call "ComputeMst" for all children
ComputeMst (Succl -> Mstl)
ComputeMst (Succ2 -> Mst2)
ComputeMst (Succ3 -> Mst3)
ComputeMst (Succ4d -> Mst4)
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ComputeMst (Succl -> Mst1)

The global table Graph is declared using > TABLE’. The terms contained as table entries have the type NODEATTR.
Space for a new entry is created using the special ’KEY’ literal, where the local variable Node holds the resulting
key, which is used for accessing entries of the table. A table entry access is done in the same way as it is done
for global variables, except that after the table name the key is given.

1.3.3 Escapes from Gentle: opaque types, and external predicates

Each programming language needs access to the underlying operating system, for example performing input
and output. Some languages provide special language constructs, others not. Gentle uses this second way.
Gentle offers so called external (action and condition) predicates, which are implemented in another programming
language, usually C. A Gentle specification needs only to know the predicates signature.

Another escape is needed to use data entities, like floating point numbers, unique identifications for program
identifiers, etc., which are not provided by Gentle. To solve this, opaque types may be declared. The user has
to define the meaning of opaque values, by predicates dealing with them.

The Equal condition above is such an external predicate, comparing two identifiers, which are opaque values.
The opaque values representing identifiers are usually computed by the scanner.

1.4 How things work

This section gives some general information how the Gentle tool is used. As Gentle is used for the generation of
programs, which analyse and transform texts (for example compilers, interpreters, text analysis) the input to the
generated program is a stream of tokens, which is constructed by a scanner. Qutput or effect of the generated
program, which is sometimes called the target program, may be a file containing assembler instructions, or
interactively interpretation of the input, or a transformed text (for examples see section 2.13).

A Gentle specification consists of mainly two parts. The accepted input language is specified by a context free
grammar and rules are specifyed how the internal representation of that input should be transformed to produce
the desired output. The grammar rules are annotated in some way to construct that internal representation.
When the generated program is started, first it parses the entire input and constructs the internal representation;
second the transformations are performed to produce the output, starting with the actions specified at the root
symbol of the grammar.

The parser is generated out of the grammar given in a Gentle specification. For that purpose parser generators
like yacc or lalr [Vielsack 88] are used. The user of Gentle is not bothered with that. But the scanner must be
written by the user. Scanner generation tools like lez or rex [Grosch 87] may be used. Gentle produces several
kinds of output: input for scanner and parser generator tools and C programs. Compiling and linking them
together results in a program solving the specified problem.

A Gentle specifications may be separated into several modules, each contained in a separate file. A library of
common used predicates exists (see section 2.12).

1.5 Syntax and semantics of Gentle

This section defines the syntax and the static semantics of Gentle. The syntax is described in extended BNF!.

1

construct  meaning
Bl

e’ a is a non—keyword terminal symbol

[a] the part between the brackets is optional

(a) the part between the parentheses is a unit
al/B a nonempty sequence of o’s separated by 8's
a* any number of a’s

ot one or more a’s

af « then 3

alB either a or 8
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1.5.1 Keywords, identifiers, and name scopes
The following keywords are used by Gentle:

’MODULE’ °’TYPE’ °VAR’ ’TABLE’ ’TOKEN’ ’NONTERM’ °’ACTION’
’CONDITION’ °’KEY’

Notice, the apostrophes surrounding the letters, belong to the keyword.

Identifiers are sequences of letters, digits, and the underscore character. The first character must be a letter.
Capital and lower case letters are considered distinct. Like Prolog Gentle distinguishes between identifiers
starting with a capital letter and a lower case letter. As a summary: names, whose first letter is a capital are:
type names and variable names. Names beginning with a lower case letter are: functor names. Names which
may start with both lower and upper case letters are: predicate names, module names.

LargeIdent = (™A | ... | "Z" ) (letter | digit)* .
Smallldent = ("a" | ... | "z" ) (letter | digit)* .
Identifier = Largeldent | Smallldent .
letter ci= npn | . | ngn | P U (AT | nono
digit HEE LY 0 LU IR (N LN

Examples:

isEqual match_patterns_5

Identifiers and keywords are separated by blanks, line breaks, and the following special symbols:
<= > : , . )Y L 1 /x %/ — + - % / v =

Gentle provides three different global and several local name spaces. The names in one global space must be
unique in the entire Gentle specification (i.e. in all used modules). Names in a local name space must be unique
in that local name space. The actual meaning of an identifier is derived from its context.

The following rules for names must be observed:

e All predicate names form a global name space.

e All global variables names form a global name space.

e All type names form a global name space.

o All functor names of one type declaration form a local name space for that type.

e All local variables of a clause form a local name space for that clause. Each local variable name space
must be disjoint to the global variable name space, i.e. local variable names must be different from all
other global variables names.

Identifiers may be used, before they are declared.

1.5.2 Comments

There are two kinds of comments in a Gentle specification:

-- starts a single line comment and
/* starts a /* possibly nested */ comment, which may range
over several lines */
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1.5.3 Modules

A Gentle specification may be separated into several modules. Each module is contained in a separate file. There
are two restrictions: All tokens must be declared in the same module; the context free grammar must appear in
one module. All modules processed by the Gentle tool (see chapter 2) form together the problem specification.
An identifier declared in one module is visible in in all other processed modules (in the corresponding name
space).

A Gentle module consists of declarations, predicate signatures, and clauses.

Gentle_Spec
ModuleBody

’MODULE’ Identifier ModuleBody .
(Declaration | Signature | Clause )* .

1.5.4 Type declarations

There are two groups of declarations. First the declaration of types of terms, second the declaration of global
variables (see section 1.5.12).

Declaration ::= TermTypeDecl | OpaqueTypeDecl | GlobalVarDecl | GlobalTableDecl .

A type declaration has the form:

TermTypeDecl = Type "=" FunctorList "." .
Type ::= Largeldent.
FunctorList ::= ( Functor | Functor " (" Arguments ")" ) // "," .
Functor ::=  Smallldent.
Arguments t:=  Argument // "," .
Argument ::= [LargeIdent ":" ] Type .
Examples:

Expr = binary (0P, Left : EXPR, Right : EXPR), const (INT), var (IDENT).
OP = plus, minus, mult, div.

Type of Argument may be any other declared type. The functor identifiers are local in a type declaration and
must be unique there. The Largeldent in Argument is used only for documentation purposes. These rules
may be viewed as a context free grammar describing typed values, which are called terms. Functors having no
arguments are called constant terms.

Another kind of values are opague values, whose types are declared using:

OpaqueTypeDecl ::= ’TYPE’ Type "." .
Examples:
TYPE’ IDENT . -- represent identifiers
TYPE’ INT . -- represent integers
’TYPE’ STRING. -- represent strings.

Values of an opaque type are constant terms. For example the scanner returns a token which has an attribute
specifying the value of an integer or an identifier.

The meaning and operations on opaque values are usually declared outside of Gentle. Gentle accepts integer
and string constants as values of opaque types. Strings are used in a C like style, the escaping conventions of
C are recognized.

IntConst = digit + .
StringConst = """ Char * """ .
Char 1:= <any (escaped) character, except " and line break> .

Simple arithmetic (+, -, *, /) may be done on opaque values. The user has to ensure (outside of Gentle) in
this case that the values represent entities, for which these operations are defined. Gentle does not provide any
operations on string constants.
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Examples:
"Hello \t world \n" -- \t: tab character, \n: newline
3+ (4 %X) -- X is an variable of type INT.

1.5.5 Terms and pattern matching
A simple term is constructed in the following way:

If f(T,...,T,) is a functor of type Tp and Xi,...,X, are terms of types Ti,...,T,, then
f(Xq,...,X,,) is a term of type Tp. A variable of type Ty is also a term of type Ty (the types
of variables are derived from the context, i.e. the position in the term it occurs).

A term not containing variables is called a ground term.
Examples:

binary (plus (const (1), Y)) -- Y is a variable of type EXPR.
binary (plus (comst (1), const (3))) -- is a ground term

Pattern matching of two terms plays a central role in parameter passing. One of the terms is always a ground
term. The pattern matching process tries to make both terms equal, by assigning corresponding subterms of
the ground term to variables of the other term. The pattern matching procedure may fail, if it is impossible to
find such subterms. The corresponding terms are assigned to variables, if the procedure succeeds.

The pattern matching algorithm is:

PROCEDURE match (s, t : terms) : BOOLEAN

-— Only ¢ may contain variables, which have to be disjoint. s is a ground term.
IF t is a variable X
THEN X :=s; RETURN TRUE -- report success
END IF
IF s = f(sl1,...,s8m),t = g(l, ..., tn)AND fand g denote the same functor symbol
THEN apply procedure match to the pairs (s, t9); 1 < i < n
IF the pattern matching succeeds for all :
THEN RETURN TRUE -- report success.
ELSE RETURN FALSE -- report failure.
END IF
ELSE RETURN FALSE -- report failure.
END IF

An example is: match(binary(plus,const(3),const(4)),binary(0p,E1,E2)) succeeds and plus is assigned
to Op1; const(3) to E1 and const(4) to E2.
match(const(3) ,binary(0p,E1,E2)) fails.

1.5.6 Predicate signatures

While processing an input text, the generated program has to do several jobs: tokens must be accepted, the input
must be parsed using tokens, an internal representation of the text must be constructed, and transformed to
produce an output. For these different jobs, Gentle offers four kinds of predicates: token, nonterminal, action
and condition predicates. Logically they are all equivalent, but they have different side effects, for example
controlling the parser.

The declaration of signatures for predicates is used to specify the kind of the predicate, and allows type checking
on terms and variables.

The syntax of signatures is:
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Signature ::=  ’TOKEN’ Identifier [ OutArguments 1 "." |
NONTERM? Identifier [ OutArguments I |
’ACTION’ Identifier [ InOutArguments ] "." |
’CONDITION’ Identifier [ InOutArguments ] "." .
OutArguments tr= (" "->" Arguments ")" .
InOutArguments = "(" [ Arguments ] "->" Arguments ")" .
Examples:

>TOKEN’ IDENTIFIER (-> IDENT).
’NONTERM’ Expr (-> EXPR).

’ACTION’ fold (EXPR -> EXPR).
’CONDITION’ Eq_Int (INT, INT).

Notice, token and nonterminal predicates may have only output arguments. For token predicates the type of
these output arguments is usually an opaque type. The nonterminal predicate given first serves as a root symbol
of the context free grammar.

1.5.7 Clauses

The body of a predicate is formed by clauses. The syntax of a clause is:

Clause = Head ":" Tail "." .

Head = HeadLiteral .

Tail = TailLiteral * .

HeadLiteral = Identifier [ "(" FormalParameters ")" ]
Examples:

Expr (-> var (X)) : IDENTIFIER (-> X).
fold (var (X) -> var (X)):.

For each clause with head name p there must be a predicate signature with name p, with the same input and
output parameter types as the head. A clause with head name h belongs to a predicate p, if h and p denote the
same identifier.

1.5.8 Literals

The right hand side of a clause consists of literals. A literal may be a predicate name and arguments for that
predicate or an operation on global variables and tables.

TailLiterals ::= TailLiteral * .

TailLiteral Identifier [ "(" ActualParameters ")" ] |
GlobalVarRead | GlobalVarWrite |
GlobalTableNewEntry |
GlobalTableRead | GlobalTableWrite .

Examples:

fold (binary (plus, const(3), const(4)) -> X)
fold (binary (plus, const(3), const(4)) -> const (N))

1.5.9 Local variables

Variables contained in terms of a clause are called local variables or just variables. A local variable is called to
be in an input position (output position) if it is contained in a term, which is used as input (output) argument.
The following rules must be observed, using variables in a clause:

e Local variables are single assignment variables. When processing the clause the variable is assigned a
value only once (it is said to be defined).
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e The value of a variable may be used at several places in a clause.

A tail variable must be defined textually before it is used

A local variable is defined, if it is at an
— input position of the head, or
— output position of a tail literal.

A local variable is used, if it is at an
— output position of the head, or
— input position of a tail literal.

These two rules may be abbreviated by head(Varges = Varyse) : tail(Varyse = Vargey).
The syntax of local variables is:

LocalVariable ::= Largeldent.

1.5.10 Formal and actual parameters

The syntactic form of parameters is:

FormalParameters ::= Parameters .

ActualParameters ::= Parameters .

Parameters ::= [ InParameters ] [ "->" OutParameters ]
InParameters ::= Parameter // "," .

OutParameters ::= Parameter // "," .

Parameter ::=  Term |

LocalVariable | GlobalVariable |
StringConst | IntConst |
Expression Operator Expression .

Term ::=  Functor [ "(" ArgumentList ")" ]
ArgumentList ::= Parameter // "," .
Expression ::= LocalVariable | GlobalVariable |
IntConst |
(Expression Operator Expression)
Operator sz LE S LU I P UL

In Parameter global variables may be used but not defined (compare section 1.5.9).

1.5.11 Predicates

As Gentle is used to describe and generate text processing programs, there must be a way to specify the input
of the generated program, i.e. the accepted language. This language is usually specified by a context free
grammar. A scanner reads the text source file and returns a stream of tokens, which is used by a parser to
analyze the syntactic text structure. The token and nonterminal predicates are used to specify the grammar.
While parsing a text, usually an internal representation of that text is build. The next step is to transform
this internal representation to analyze the text. The result of this step is the output of the target program. To
specify this analysis action predicates and condition predicates are used.

The evaluation of predicates may succeed or fail. The meaning and reaction on success or failure depends on
the predicate kind.

Token and nonterminal predicates

For token predicates only the signature is specified, i.e. there is no clause, which belongs to a token predicate.
Nonterminal predicates must have at least one clause.

The token and nonterminal predicates describe a context free grammar. The nonterminal predicate names are
read as nonterminal symbols, the token predicate names are read as terminal symbols of the grammar. The
clauses of the nonterminals are production rules of the grammar. The tail of a nonterminal clause may contain
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token, nonterminal, and action predicates, the action predicates must follow the token and nonterminals. The
grammar specified with the token and nonterminal predicates must fulfill the LALR (1) condition [Waite ¢¢ * 84].
If this condition may not be met, some exceptions are possible, see section 2.9.

From Gentle’s point of view, token and nonterminal predicates may never fail, because failure means there is
a syntactic error, which is handled by the generated parser. In the error case an error message is emitted and
and the syntactic error is repaired. The selection of a nonterminal clause is done by the parser using a special
parsing algorithm.

Token and nonterminals may have no input parameters and may have several output parameters, which may be
used to construct a term representation of the parsed input. If a nonterminal clause contains action predicates,
these are evaluated, if this clause was selected by the parser, i.e. the parser reduced this grammar rule.

Action and condition predicates

If there is no clause for an action or condition signature, this predicate is said to be external. The body of an
external predicate must be implemented outside of Gentle, see section 2.11.

Action and condition predicates are evaluated using the following strategy: The predicate signature and the
clauses belonging to the signature form a procedure. These procedures have an additional boolean result,
signaling success or failure of the predicate. The evaluation of a predicate is then transformed to a procedure
call. A predicate procedure call is done in two steps, involving pattern matching. Let predicate p have formal
parameters iny,outy be called with actual parameters in,, out,. The mapping of actual parameters to formal
parameters is done using pattern matching. The formal input parameters get their values assigned, when a
clause of the predicate is evaluated (see below). After the call of the procedure’s body the output parameters
are matched.

call_predicate ( p) : BOOLEAN;
call_body p;
match (outy, out,);
IF call_body AND match has been successful

THEN RETURN TRUE -- report success
ELSE RETURN FALSE -- report failure
END IF

The body of a predicate procedure p is formed by the clauses cics ... c,, numbered in their textual order. The
clauses are evaluated in that order until the first succeeds. If this happens, success is reported to the caller of
the body of p. If all clauses fail, failure is reported. In a short term: clauses are connected by disjunction. Let
the clauses of p look like:

p (ini -> out;) : tail; -- clause c;

p (in, -> out,) : tail, -- clause c,
then the evaluation of the body is done by:

call_body ( p) : BOOLEAN;

i=1;

LOOP
IF i > n -- no more clauses
THEN RETURN FALSE -- report failure
END IF;

evaluate_clause (c;)

IF this was successful

THEN RETURN TRUE -- report success
ELSE i := i + 1 -— +try next clause

END IF
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END LOOP

The next step is to show, how the clause ¢ with head p and tail p; ...pn. is evaluated: First the formal and
actual input parameters are matched. If the matching fails, the entire clause fails, otherwise the predicate
procedure p; is called. If the call was successful, the predicate procedure p, is called, otherwise failure is
reported to the caller of the clause, and so on. If the calls of all literal procedures have been successful, success
is reported to the caller of the clause. In a short term: tail literals are connected by conjunction. More formally
the clause evaluation looks like:

evaluate_clause ( c¢) : BOOLEAN;
match (in,, ing)

IF this matching fails

THEN RETURN FALSE -- report failure

END IF;

i=1;

LOOP
IF i > n -- no more tail literals
THEN RETURN TRUE -- report success
END IF;

call_predicate (p;);

IF this call was successful

THEN i := i + 1 —— next tail literal
ELSE RETURN FALSE -- report failure
END IF

END LOOP

Two assumptions for the pattern matching are made here: first, that the actual input term is a ground term
before calling the procedure and second that the formal output parameter on return from the call is a ground
term. These assumptions are fulfilled, because the way variables may be used in a clause (see section 1.5.9),
and the fact that terms constructed during parsing are ground terms.

Action and condition predicates differ only in their behaviour in the case of failure. An action predicate is used
in situations, where it is “obvious” that the term transformation may not fail. Hence an action predicate is not
allowed to fail, because this failure points to a design error in the specification. If it fails in spite of that, the
target program aborts printing an error message.

Condition predicates are used for testing conditions a term may fulfill or not, and hence a condition predicate
may succeed or fail.

1.5.12 Global variables

To make it easier to write complex specifications or to deal with global information (for example a compiler’s
definition table), Gentle provides global variables and global tables.
A global variable is declared as:

GlobalVarDecls
GlobalVariables

’VAR’ Type GlobalVariable "."
Largeldent.

Type may be any type. Global variables are accessed with:

GlobalVariable "->" Parameter .
GlobalVariable '"<-" Parameter .

GlobalVarRead
GlobalVarWrite

Examples:
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VAR’ INT Counter.

Counter -> X

Counter <- X+1

’VAR’> EXPR ExprVar.

ExprVar <- binary (X,Y,Z)
ExprVar -> binary (XX, YY, ZZ)

A global variable must get a value before ? that value is read.

A generalization of global variables is the global table concept. A global table is something like an array in
conventional imperative programming languages, except that the space for entries is reserved dynamically. The
entries of a global table are accessed using a key and the conventional bracket [ ] notation. A global table is
declared as:

GlobalTableDecl = TABLE’ ((Type GlobalTable) // "," ) "[" KeyType "1".
GlobalTable = Largeldent.
KeyType = Largeldent.

The Type of the GlobalTable entries may be any declared type. KeyType is introduced as a new opaque type
and is used as type of the key of an entry in the table. The usual operations on opaque types are not allowed
for keys. Access of a global table entry is done with:

GlobalTableRead = GlobalTable "[" KeyVariable "]" "->" Parameter .
GlobalTableWrite = GlobalTable "[" KeyVariable "]" "<-" Parameter .
KeyVariable = LocalVariable .

where KeyVariable is a local variable holding the key. Providing space for a new entry in all tables of the same
declaration is done with:

GlobalTableNewEntry ::= °’KEY’ KeyType KeyVariable .

TABLE’ NODEATTR Graph, INT Count [NODE] .

’KEY’ NODE Node

Graph [Node] <- node (false, Info, Succl, Succ2, Succ3, Succ4)
Graph [Node] -> node (Mark, Infol, Succll, Succ21, Succ31l, Succ4l)
Count [Node] <- X

Count [Node] -> XX

KeyType must be an key type of a table declaration. KeyVariable is a local variable holding the key for a table
access. A global table entry must get a value before ® that value is read.

The Parameter of a global read access and the KeyVariable of a ’KEY literal is said to be at output position,
the Parameter of the global write access is at input position (see section 1.5.9).

GlobalTableNewEntry, the write access of global variables and tables is a special kind of action predicate, which
never fails. The read access of global variables or tables is a special kind of condition predicate. The Parameter
is matched with the value stored in the global variable or table, hence a read access may fail.

1.5.13 Side effects in Gentle

Logic predicates usually don’t have any side effects. But as Gentle allows the use of global variables, tables,
and the call of external predicates side effects are possible and sometimes desired. An example is file input and
output or handling global data. Notice, side effects of a clause are not “undone”, when this clause fails!

1.6 Printing terms

For testing a system it is often useful to visualize the structure of the terms involved. Gentle supports this
by generating action predicates, which print a complete term onto the standard output device. To use this
predicates, the signatures must be declared as follows:

2means a time relation

3means a time relation
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’ACTION’ print_Type (Type ).

Type is the name of any declared type.
For example (see section 1.2) print EXPR (binary (plus, var (a), const(3))) produces:

binary(
plus
var (

a

)

const (
3

)

)

While the printing procedures for term types may be generated, those for opaque and types must be implemented
by the user, because only the user knows their actual structure (see section 2.11.1).

1.7 The structure of a compiler specification

This section introduces the structure of a typical target specification. The basic idea is that compilation is
done in several passes. Terms act as interface between passes. They form the intermediate languages. The first
step is to read the input and parse it. While doing this, the first intermediate representation of the input is
constructed. After parsing has finished the term transformation is started. Each transformation step has input
and output parameters, taking the input (i.e. one intermediate language) and transform it to the desired output
(i.e. another intermediate language). The last step is the generation of some output, for example writing a file.
The following program segment gives an impression of such a specification:

’MODULE’ example
-- Define the intermediate languages
IR.1 = ..... - +.... IRn=..... .

—- The root of all:

’NONTERM’ ROOT.

ROOT : Parse (-> Ir_1)
Transform_1 (Ir_1 -> IR_2)
Transform_n_1 (Ir_n_1 -> IR_n)
GenerateCode (IR_n)

-- The context free grammar
’NONTERM’> Parse (-> IR1).

—- the transformations:
JACTION’ Transform_1 (IR_1 -> IR_2).

ACTION’ Transform_n_1 (IR_n_1 -> IR_n).

—-- Producing some output
ACTION’ GenerateCode (IR_n). ....

1.8 Gentle versus Prolog

This section relates Gentle to Prolog, which is based on Horn-logic theorem proving. A short introduction of
Horn-logic is given in [Clocksin ¢ % 84, chapter 10], a complete introduction into logic programming is found in
[Lloyd 87]. Gentle is compared to Prolog[Clocksin ¢ @ 84], which is one implementation of Horn-logic. Gentle
differs from Prolog in four points:

1. Gentle restricts the usage of logical variables (see section 1.5.9).
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2. The data flow inside of predicates is fixed. For each argument of a predicate its mode must be given, i.e.
it is fixed, whether an argument is an input or an output parameter (see section 1.5.6).

3. The Gentle proof algorithm differs from that of Prolog (restricted backtracking).

4. Due to these restrictions, the unification algorithm is optimized.

1.8.1 Prolog

A Prolog program is formed of variables, terms, literals, and clauses.
A term is either a variable or a structure formed out of terms (i.e. f(t1,...,t,)), where fis a functor symbol
and t; are terms. Constants are structures without any argument. A ground term is a term which contains no
variables.
A literal or predicate is a structure p(ty,...,t,), where p is a predicate symbol (which are disjoint from variables
and function symbols), and ¢; are terms. A literal may be negated.
A Prolog clause is a Horn clause, i.e. is a disjunction of literals, where at most one literal is positive. The
following notation is used:

Prolog clause notation may be read as:

1. ag: —ai,...,a,. implication “ag is true if a; and ...and a, are true”. (apV —a; V-az2 V...V -ay,)
2. ap: —. ag is a fact, i.e. is always true.
3. :1—ai,...,a,. question (goal): “are a; and ...and a,, true” (-a; V-as V...V —ay).

The left hand side of a clause (i.e. to the left from the :-) is called the head, the right hand side the tail of the
clause.

A Prolog program consists of several implications and several facts. Executing a Prolog program means to state
a goal G and to prove that there is a substitution o such that o(G) is derivable from the program. o is called
an answer substitution.

A simple Prolog example is:

bachelor (X) :- male (X), unmarried (X). an implication.

male (charly) :- . a fact.

unmarried (charly) :- .

:= bachelor (X). the question, to be derived.

The resulting answer substitution is: X/charly.

A substitution o is a finite set of the form {v;/t1,...,vn/t,}, where each v; is a variable, each ¢; is a term
distinct from v; and the variables vy, .. ., v, are distinct. Each element v; /¢; is called a binding for v;. o is called
a ground substitution if all ¢; are ground terms. A substitution o is applied to a formula F, if all occurrences of
the variable v; in F are simultaneously replaced by t;.

For a set S of literals, a substitution o is called a unifier for S, if 0(S) (i.e. o applied to S) has only one element.
A unifier 6 for S is called the most general unifier (mgu) for S, if for each unifier o, there exists a substitution
v such that o(S) = v(6(9)).

A method to prove a goal w.r.t. a set of clauses is SLD resolution [Lloyd 87]. A Prolog interpreter basically
consists of a SLD resolution proof procedure.

prolog prove (: —A;,...,Ap) > o
-- proves the goal (: —Ay,...,Ay,), output is the answer substitution o.
G:=:—(44,...,4Ap)
LOOP
search a clause H: —L4,..., L, such that 360 € mgu(H, A;)
IF there exists no such clause
THEN o:= {}; RETURN FAILURE -- G can not be prooven.
ELSE GI = 0( —Ll,...,Ln,AQ,...,Am)
-- notice if n = 0, then H is a fact.
prolog prove (G’) — 6’
IF this succeeds
THEN o:=6'06
RETURN SUCCESS -- G is prooven.
ELSE -- search a new clause, i.e. backtrack
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END IF
END IF
END LOOP

The clauses are tried in their textual order.

1.8.2 The Gentle proof procedure

Due to the restricted task of Gentle the full power of SLD resolution is not needed, and as a result a more
efficient implementation is possible. The price one must pay is that the Gentle proof algorithm is not complete,
i.e. not all possible solutions are found.

The Gentle proof procedure differs in two points from the Prolog procedure. First not all predicates are allowed
to fail (see section 1.5.11). Second backtracking is restricted in the following way:

If in the prolog_prove procedure the proof of a literal A;,i > 1 fails, backtracking is performed and a new clause
is tried. If this happens in gentle_prove, no backtracking is performed, the proof of G fails. Backtracking is
done only if the proof of : —Ly,..., L, fails. That is, once the tail of a clause has been prooven completely, all
alternatives for that clause are discarded.

gentle_prove (: —Ay,...,Ap) >0
-- proves the goal (: —Ay,...,A,,), output is the answer substitution o.
G:= (:—A,...,An)
LOOP

search a clause H : —L4,..., L, such that 30 € mgu(H, A;)
IF there exists no such clause
THEN o:= {}; RETURN FAILURE -- G can not be prooven.
ELSE Gi:=6(: —Ly,...,Ly)

gentle_prove (G1) — 61

IF this succeeds

THEN Gz = 01 ] 0( —Az, e ,Am)

gentle_prove (G2) — 62

g = (92 o 01 of
RETURN success or failure of this.
ELSE -- search a new clause, i.e. backtrack
END IF
END IF
END LOOP

The clauses are tried in their textual order.

1.8.3 Optimized unification

Since the data flow is restricted in Gentle a simpler unifier may be computed. (It is no limitation to examine
the following with only one input and one output parameter)

Such an unifier § for two Gentle terms P(Iy,Op) and P(I,,0,), can be defined as the composition of several
substitutions:

G{P(IhaOh);P(Igaog)} = Uout(UP(Uz'n(UC’{P(IhaOh);P(Igaog})))) (1.1)

where P(Ip,0p) is the head of the selected clause, and P(I;,0,4) the goal to be proven. I denotes the input
term and O the output term.

Since the tail literals are evaluated from left to right, and all variables of the input term must be defined, o¢
denotes the substitution, which has bindings for all variables of I,. 0y, binds variables of the formal input
parameter to terms of the actual input term. op is the substitution computed by the predicate P, i.e. binds
the variables of the formal output parameter. o,,; defines the variables of the actual output parameter. These
substitutions are defined using the following equations:

oinll) = oc(1,) (1.2)
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9out(Og) = 0p(0in(On)) (1.3)

Notice, the following statements are consequences of the data flow and evaluation strategy rules of Gentle:

o I,,0,4,I,0} are terms.

e I, and O, have no common variables®.

e (O, may use variables defined in I}.

e {I,,0,} and {Ij,Op} have no common variables®.

e 0¢(ly) is a ground term.

e 0, (1) is a ground term.

e 0;,(0p) is a term.

e 0p(0in(0Op)) is a ground term.

Now it must be shown that 6 is a unifier for {P(I5,Op), P(I;,04)}. By a simple computation using the above
notices, one sees that:

0{P(In, On), P(I5,04)} = {P(0c(In); 00ut(0g)) }

It is obvious, that 6 is not a most general unifier.
The substitution ¢, and g, as defined by equation 1.2 and equation 1.3 are computed by the pattern matching
procedure defined in section 1.5.5 (notice, that one term must be ground for that procedure). If the selected
clause C for P looks like:

P(Ih,Oh) : Pl(Il,Ol) e Pn(In; On)

op is computed as:
Op = Oin, ©Oouty © "9 Oout,

L.e. op summarizes all computed variable bindings.
If P(I,,0,) is the j’th tail literal, then

0C = Ojing ©Oputy ©°°°©° Uoutj_1

“because the use / definition rules for local variables
5due to the scoping rules for local variables



Chapter 2

The Gentle Programming Environment
User Manual

2.1 Introduction

The Gentle tool is used to produce an executable program, which implements the specification. This chapter
is the user manual for the Gentle programming environment. It is assumed, that the reader knows the Gentle
language and its technical terms (see chapter 1).

The usage and options of the commands used to start the Gentle system are described in the manual page, see
appendix A, or try the UNIX command man gentle.

Section 2.3 shows what must be done to get an executable compiler. Section 2.4 presents the necessary files and
explains their meaning. A makefile generator supports the UNIX make facility; it is described in section 2.5.
Each program has a “main” procedure, the one of Gentle is explained in section 2.6. Section 2.7 shows how
the executable target program must be called. Section 2.8 deals with the scanner specification, section 2.9
gives some notes on parsing and parsing conflicts. Section 2.11 gives the conventions of implementing your own
external predicates. The Gentle library is documented in section 2.12. Section 2.13 introduces the example
library.

The Gentle tool translates Gentle specifications into C programs and input for some program generators (scanner
and parser generator). The Gentle environment uses some features of the UNIX operating system, mainly the
make facility. For that reasons, the terminology of C and UNIX is used in some places of this manual.

2.2 Directory structure of Gentle

The directory structure of the Gentle tool is:

directory names contents

gentle $GENTLE_DIR must refer to this directory
bin shell scripts
1ib Gentle library
examples example library
documentation
install shell scripts used to install Gentle
reuse the reuse libarary
tools-bin scanner --, parser generator, etc.
tools-1ib library used by scanner, parser etc.
c-src C sources of Gentle
spec Gentle sources of Gentle

21
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2.3 How to get an executable compiler

The program generated out of a Gentle specification is called the target system, target program or simply target.
To generate a target one may proceed as follows:

Install the Gentle system This is usually done once by the system manager. Read the Gentle installation
notes for that, which are delivered with the distribution tape.

Set up the Gentle environment for your target by creating a directory in the file system, which should
contain the target system. Copy the makemake and MAIN.c files from the Gentle library (short library)
into the target directory. This two files are frames, which must be filled with specific target information.
If MAIN.c is not intended to be changed, it is not neened to be copied.

Be sure, that the UNIX environment variable GENTLE_DIR contains the name of the directory, where
the Gentle system is located.

Install the library by executing the makemake command.

Write the target specification consisting of the Gentle “program” and the scanner specification. The ex-
ample library of the Gentle system (see below) may be used to get an impression, how things could look
like.

Generate the target. Whenever a new Gentle module is created (i.e. a new file containing a part of the
target specification is introduced) the makemake command must be executed, to produce a new makefile,
which controls the generating process. The entire generation process is invoked just by executing the
UNIX make command (without giving parameters). If this process is successful, the target is finished.

The UNIX make command is also used to minimize the needed regeneration and recompilation of the
target system, if one or more of the input files are changed.

If only a single Gentle module should be analyzed, the g command may be used (see Gentle manual page).

Execute the target program.

2.4 What files are needed for a complete target specification

A complete specification consists of a set of files. Some of these files must be completely written by the user,
some must be adapted, and some are used without modifications. Table 2.1 shows these files and their meaning.

Filename meaning kind of manipulation

*g The modules of the Gentle specification, | Some must be written by the user, some
i.e. the grammar of the input language, | are taken unchanged from the standard
the definition of terms, and rules for their | library.
transformation.

SCANNER.rex | The scanner of the target system is gen- | Must be adapted by the user. Some scan-
erated using the scanner generator rex | ner specifications are contained in the li-
[Grosch 87]. This file contains the scanner | brary (see section 2.8).
specification, i.e. the input to rez.

makemake To support an automatic generation and | A frame of makemake is contained in the
(re)compilation process, the UNIX make | library.
command is used. Input to make (a
makefile) is generated by the makemake
command.

makefile Generated by makemake. No manipulation by the user needed.

MAIN.c The main program, which triggers all ac- | A frame of MAIN.c is contained in the
tions of the target program. library.

Table 2.1: Files needed for a complete specification of a target
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2.5 The Makefile generator

The UNIX make facility is a powerful tool for maintaining large software systems. It is used to process (i.e.
compile, assemble, link, etc.) files to produce the desired system. It is also used to do this job with less redoing
as possible. This minimal effort is obtained by defining dependencies of the files and their processing. This
information is contained in a file named makefile. For more information see the UNIX manuals®.

The Gentle environment offers a makefile generator called makemake. makemake performs three tasks:

1. It installs the library at the first call.
2. Some user defined parameters are set for the target generation process.
3. It generates the actual makefile with the actual dependencies for the target.

makemake is implemented as a UNIX (Bourne) shell procedure. Table 2.2 shows the parameters, which the user
must set. Notice that make uses the Bourne shell, hence use only Bourne shell features.

Parameter name | Meaning

NAME Name of the target system.

DEST The directory the target system is located. All files needed for ex-
ecuting the target system are copied to the directory $DEST/bin.
That place is assumed by the MAIN procedure (see section 2.6).
CFLAGS The C compiler uses different options for controlling the compi-
lation process. This options are specified here. For example -O
for optimizing the code or -g for producing symbolic debugging
information.

CPPFLAGS This flags control the behaviour of the cpp preprocessor of the
C compiler. The flags are used to compile the Gentle library
with different options (see section 2.12). Four conditional compi-
lation flags are defined NR_OF_IDENT_ATTR (see section 2.12.2)
and USER_DEFINE_OPAQUE (see section 2.11.1), Dialog, and
IgnoreChar. For more information have a look into the makemake
file.

USER_SRCS The files containing the implementation of external Gentle predi-
cates (used in the target specification) must be specified for compi-
lation using this variable. The implementation of external library
predicates, and the system procedures are given by default.

OTHER_PROGS | If some other programs should be compiled and linked, these pro-
grams are specified using this variable. For example the Gentle
error handling programs Lister and Unlister (which inserts and
removes the error messages into a source file) are managed in this
way.

Table 2.2: The makemake parameters.

2.6 The MAIN procedure

The “main” procedure of the target system (i.e. the procedure called first when starting the execution of the
target program) is contained in the file MAIN.c .

Using this MAIN program, the scanner may be tested separately, using the conditional compilation feature of
the C language. This is done by compiling MAIN.c with the -DTST_-SCANNER option of the C compiler /
preprocessor. This option may be specified in makemake as an additional CPPFLAGS parameter.

Tor the GNU make manuals
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2.7 Executing the target system
The executable target program reads the command line to set some parameters. Its usage is:

target [files ...]

The files ... parameter specify the input files for the target program. If no file is given the standard input
device is used. If several file names are passed as parameter, the behaviour of the system depends on the EOF
(end-of-file) specification given in the scanner description.

Other options may be defined by the user.

2.8 The scanner specification

The scanner of the target system is generated using the scanner generator rex [Grosch 87]. This section gives a
short introduction to the parts of the scanner, which are needed by the rest of the target system. Please read
the rexz manual for detailed information!

The library contains some scanner specifications for many tokens, for example, identifiers (C, Ada and prolog
style), comments (C, Ada, Modula style), numbers (decimal, hexa—decimal integers, fixed and floating point
real numbers), strings (C and Modula style), operators (“+”, ..., “:=”, ...). Handling of more than one input
file is also provided. Positional information of the tokens is computed.

The Gentle system generates from the TOKEN predicates the file g. TOKENS.h which #defines names for unique
token numbers. These names consist of the prefix g_ and the name of the TOKEN predicate. These #defined
names may be used in the scanner specification.

The scanner specification has several parts:

EXPORT The things contained here are written to the C header file of the generated scanner.

# include "g.SCANNER_TYPES.h"
# include "SYS.h"
extern void ErrorAttribute (); /* (int Token, tScanAttribute *Attribute) */

The C header file g.SCANNER TYPES.h contains a generated type definition for the attributes (output
parameters) token may return. These attributes are usually Gentle opaque values and hence they are
implemented as pointer to some information. The definition (for tokens, which have at most two output
parameters) looks like:

# include "Positions.h"

typedef struct {
tPosition Position;
long *attri;
long *attr2;

} tScanAttribute;

The scanner computes the source position automatically. tPosition is the type of this information. The
opaque type P0OS declared in the library represents the positional information in a coded form.

The names of the attributes are predefined as attrnr, where nr ranges from 1 to the maximal number of
attributes a token returns. attrl denotes the first attribute of a *TOKEN’ signature, attr2 the second,
etc.

The procedure ErrorAttribute is called, if the parser repairs a syntactic error and inserts a token, which
has attributes.

GLOBAL In the GLOBAL section procedures, variables, etc. used by the rest of the scanner are declared.
The header files of used modules must be included:
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GLOBAL {

#include <string.h>
#include "g.TOKENS.h"
#include "ERRORS.h"
#include "IDENTS.h"
#include "IO.h"
#include "SYS.h"

}

The parser (see section 2.9) does some error recovery and must hence know the defined “error” values of
the tokens having attributes. The procedure ErrorAttributes may look like:

/* procedure returning error attributes */
/* input is a token, output is the ’’error’’ attribute. */
void ErrorAttributes (Token, Attribute)
/* we have maximal two attributes per token */
int Token;
tScanAttribute *Attribute;
{
switch (Token) {
case g_IDENTIFIER : Attribute->attril

(long#*)G_No_IDENT;/*see library module ’IDENTS’*/

Attribute->attr2 = 0;
break;
case g_NUMBER : Attribute->attrl = (long *) G_pool_alloc(sizeof (double));
/* allocate space for a floating number */
*(Attribute->attr2) = 1.0;
Attribute->attr2 = 0;
break;
case g_STRINGCONST : Attribute->attrl = 0;
Attribute->attr2 = 0;

break;

default : Attribute->attrl = 0;
Attribute->attr2 = 0;
break;

}
}

LOCAL In the LOCAL part, variables, etc. are defined, which are used in the statements of the RULEs.
char word [256]; char strconst [256]; register long length;

BEGIN Initialization of the scanner. If the IDENTS” moudule is used, it must be initialized here:
BEGIN {
G_IDENTS_init ();
}

CLOSE Finalization of the scanner, is empty.

EOF Actions when the end of the input file is reached. If more than one file should be read as input, the
following program fragment may be used (see the I0 module from section 2.12).
if (G_IO_MORE_FILES () == TRUE) {
/* start reading a new file */
G_IO_CUR_IN = G_IO_NEXT_FILE ();
BeginFile (G_IO_NAME (G_IO_CUR_IN));
/* see library module ’I0° */
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If there is no more file, then the default action is to signal the parser the end—of-file condition.

DEFAULT This section deals with illegal characters.

DEFAULT {
/* if an illegal character is read, an error message is emitted */
{ long pos;
char word [256];
g_GET_CUR_POS (&pos); /#* returns the current source position, in the coded form*/
GetWord (word); /# reads the illegal character */
g_ERROR_TXT ("illegal character ’$’", word, pos);

DEFINE Abbreviations for sets or sequences of characters may be defined here. For example:
digit = {0-9} .

START Defines states for the scanner, see [Grosch 87, page 8]. #STD# is the default state.

RULES This part defines the regular expressions, forming the tokens of the language. The TOKEN predicates
of the Gentle specification are used to #define unique numbers for the tokens. The definitions are contained
in the file . TOKENS.h. The #defined names are g_token_predicate_name.

For example:

#STD# ":=" : { /* TOKEN’ ASSIGN (-> P0S). */
g_GET_CUR_POS (&Attribute.attrl);
Attribute.attr2 = 0; /* only for initialization */
return g_ASSIGN;
}
#STD# "+" : {return g_PLUS;} /* ’TOKEN’ PLUS. */
#STD# "PROCEDURE" : {return g_PROCEDURE;} /* ’TOKEN’ PROCEDURE. */

/* identifiers (Modula - style) */
/* *TOKEN’ IDENTIFIER (-> IDENT, PQS). */
#STD# letter (letter | digit ) * :
{length = GetWord (word);
g_enter_IDENT (word, length, &(Attribute.attrl));
/* see library module ’IDENTS’ */
g_GET_CUR_POS (&Attribute.attr2);
return g_IDENTIFIER;
}

The token ASSIGN has the (coded) source position as attribute, the token IDENTIFIER has two output
parameters: the identifier and the position.

When the generated scanner is compiled using the C compiler, don’t bother about the compiler warning state-
ment not reached.

If the target system is used interactively, i.e. may read its input form a keyboard, the conditional compilation
flag Dialog (see section 2.5 should be set. The effect is that when encountering a newline character another
blank charcater (this default may be also changed, see IgnoreChar) is inserted, to give the scanner the needed
look ahead symbol.
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2.9 The generated parser

The TOKEN and NONTERM predicates of a Gentle specification are used to generate an LALR parser
[Waite ¢ @ 84]. The parser generator tool is lalr [Vielsack 88]. This generated parser handles syntax er-
rors completely by repairing them. The attribute values of inserted tokens are computed by the procedure
ErrorAttributes as described in the scanner specification (see section 2.8).

If the specified context free grammar has no LALR—conflicts, the user is not bothered with details of that
tool. But there are two kinds of grammar conflicts [Waite ¢ * 84], shift reduce (also called read-reduce) and
reduce reduce conflicts. The presence of conflicts is reported by the parser generator. The file _Debug contains
a detailed description of the conflict and the default rules how it is solved. Parser generators usually give the
user a possibility to solve these conflicts using special “directives” in the grammar specification. Gentle does
not have such “directives”. The other way solving grammar conflicts is to use the default rules of the parser
generator. That is the way Gentle does it.

lalr provides two default rules: 1. shift-reduce conflicts are solved by shifting the token. 2. reduce-reduce
conflicts are solved in the way, that the textual first grammar rule is reduced (see [Vielsack 88, page 16]).

2.10 Generated C code

This section gives an informal insight how the generated C [Kernighan ¢ ® 77] code looks like. The translation
of the grammar part to input for a parser generator is not described here. Table 2.3 shows how terms, variables,
action and condition predicates are implemented.

Gentle c

Terms Memory area in the heap. A term is accessed using a
pointer to that area.

Pattern matching Programmed if statements.

Local variables Local variables of procedures, containing terms, i.e.
pointers.

Global variables Global variables, containing a terms, i.e. pointers.

Global tables Memory areas on the heap. 'KEY’ allocates this area,

and returns a pointer to it.
Action / condition | C functions returning a boolean value, expressing suc-

predicates cess or failure of the procedure call.
Clauses The clauses of a predicate form the body of the predicate
function.

Table 2.3: Mapping of Gentle onto C constructs

2.10.1 Terms and pattern matching

Each functor of a term type is mapped to a positive integer value. A term is implemented as a memory area
on the heap, and referred by a pointer to that area. The area contains the functor’s name, or more exactly, its
number, and for each argument a pointer to the argument term. Figure 2.1 shows how the term f (a,b) looks
like. The arguments of the terms are accessed using the (' array notation, which is actually pointer arithmetic.
For example, the term above is referred by the address (long#)T, the first component (i.e. a) is referred to by
address (long*)T[1]. For all constructed terms of a clause the storage is allocated once when the evaluation
of the clause starts. The variable B contains the base address of the returned memory area.

Remember that at least one of the two terms considered by the pattern matching must be a ground term, this
term is stored already in the heap. The non-ground term is not constructed explicitly on the heap, but its
functor numbers are compared with the corresponding functor numbers of the ground term. Pattern matching
is implemented using direct code for the partial evaluation of the standard top down matching algorithm. For
example, testing whether the term stored at location T is a the term f(a,X) is done by the following code
fragment:
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a/2 | b/3 | f/1 T T

Figure 2.1: Term representation of f (a,b)

Pattern matching
if (*(long *) T != 1) goto L1; If term addressed by T is not a f term, pattern doesn’t
match. Continue at location marked with label L1.
if (*(long *) T[1] != 2) goto L1; | If the first argument of the £ term is not an a term, the
pattern doesn’t match.
The second argument of £ is not checked, because it is a
term variable.
Now the term specified by T is matched to f(a,X).
L1 : .- Failure, the term does not match. Code for that case.

If this pattern matching fails, the program continues at the failure label L1. Using the Gentle variable X, is
translated to the access path (long *)T[2].

2.10.2 Action and condition predicates

All clauses of a predicate form the body of the predicate function. The predicate’s signature is translated to
the function head. Input parameter are passed by value, output parameter by reference. The function returns
a boolean value, to indicate the success or failure of the predicate.

FEach clause is translated into a piece of code, which has two “exit” points, one for successful evaluation of the
clause and one for its failure. The first step of evaluating a clause is to match the actual with the formal input
parameters. If this was successful, the predicates of the clause’s tail are called. Again, when all calls has been
successful, the output terms are constructed and the function is exited reporting success to the caller of this
predicate. If one of these steps fail, a jump to the end of the clause’s code is performed. If there is another
clause, this is tried, otherwise failure is reported to the caller.

Calling a predicate is done in three steps. First, the actual input parameter of the predicate to be called
are constructed. Second, the predicate function is called and last but not least the actual and formal output
parameters has to be matched. If all these steps have been successful, the predicate call was successful, otherwise
a jump to the failure label of the clause containing this call is performed.

2.11 Writing your own external predicates

External predicates of Gentle are used as loop holes to escape from the Gentle language. These predicates are
implemented in another language, for example C. One important usage of external predicates is file input and
output.

The user may write his/her own external predicates. For doing this the following conventions must be observed.

Naming conventions: ACTION and CONDITION predicates are called as functions. The procedure name
is constructed by appending the predicate name to the prefix g.. Most other names (not generated from
a specification) of the Gentle systems have the prefix G-

Parameter passing: Terms are represented as pointers to some entities. Input parameters are passed (as
usually in C) “call by value”, i.e. the address of the term is passed. Qutput parameters are passed as “call
by reference”, i.e. the address of the variable, which is used to store the output is passed. The meaning
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of opaque values must be defined by the user. For example the opaque STRING type from the STRINGS
library (see below) is interpreted as char* while INT is interpreted as a number of type int.

Return values: Both ACTION and CONDITION predicates are implemented as functions returning a boolean
value, coded as 1 for TRUE (success) and 0 for FALSE (failure). ACTION predicates must always return
TRUE. CONDITION predicates may return both values. The values for TRUE and FALSE are defined
in the files SYS.h, SYS.c contained in the library.

2.11.1 Printing of opaque values

For testing purposes Gentle offers the possibility to print terms onto the standard output device. The printing
routines for term types are generated by Gentle. For opaque types these routines may be generated or may be
written by the user. In the first case a magic unique number is printed, in the latter case, the user may print
the information represented by that opaque type. Which of these two ways is used, is specified in the makemake
generator, using the CPPFLAGS parameter. Including -UUSER_DEFINE_OPAQUE into CPPFLAGS chooses
the first, while -DUSER_DEFINE_QOPAQUE the second way of printing. If the user wants to write print routines
for opaque types the procedure interface looks like:

g_print_indented_Type(x,n) int x; int n;

/* ’int x’ may be replaced by any other type, which has the same ’sizeof’ as ’int’. */
This corresponds to the action predicate
’ACTION’ print_indented_Type (Type, INT).

This procedure indents the printed entity n units (spaces). z specifies the opaque value. print_Type (...) calls
this procedure with a zero indentation.

A concrete example is:

#include "SYS.h"

/* The routine prints STRING opaque values.  */
/* Used for ’ACTION’ print_STRING (STRING). */
g_print_indented_STRING (x,n)

char *x;

int n;

{G_print_indent(n); /* indent ’n’ units  */
printf ("%s\n",x); /* print opaque value */

return TRUE;

}

2.12 The library

The Gentle library contains Gentle modules, various scanner specifications which may be copied and changed,
frames of makemake and MAIN.c, and some system programs.

This section introduces the Gentle predicates, which are usually external predicates, and their usage. The names
of the modules are: 10, IDENTS, ERRORS, STRINGS, MATH, BOOLEAN, ARRAYS, and STATISTICS.
If you have suggestions for library extensions, send the sources to me, they will be made availabe for other users
too.
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2.12.1 The /0 module

This module is used for handling file input and output. The target program may read (write) its input (output)
from (to) several files, including standard input (output). The files are accessed one after the other, i.e. at a
time only one file may be read and one file may be written.

The input works together with the SCANNER (see the scanner EOF section). Files which should be read are
declared using the IO_DECLARE routine, which may be called from the MAIN program or from the Gentle
program. A filename may be specified for reading several times using IO_DECLARE, but it is read only once.
The files are processed in their declaration order. The “-” character is used for input (output) from (to) standard
input (output) .

For writing a file the actions shown below are used.

The IO module is defined as follows:

’MODULE’ IO
/%

* For output to a file:

* The output file may be opened with ’io_open’. "-" means stdout.

* If ’jo_open’ is not called, then stdout is used.

* The output is buffered, its size (OutBufSize) specified in file ’I0.c’
* The buffer is written by a call of ’put_nl’ or ’put_bf’, if it is 90%
* filled, or if the file is ’stdout’.

* ’io_close’ flushes the buffer unconditionally.

*

*
~

’ACTION’ io_open  (STRING).
-- All output is written to that file.
-- If the file can’t be opened for writing, an error message
-- is written, and the program is aborted.
-- "-" means standard output
’ACTION’ io_close.
-- If an outputfile is open,
—-- then the buffer is flushed and the file is closed.
—-- else nothing.

’ACTION’ put_s (STRING) . —- writes a string.
’ACTION’ put_si (STRING) . —- writes a string, interpretes escaped char’s.
’ACTION’ put_d (INT). -- writes an integer as decimal.
’ACTION’ put_x (INT). —-- writes an integer as hexadecimal.
’ACTION’ put_r (REAL) . -- writes a real number.
—-- using fprintf (f, "flg", *r);
’ACTION’ put_sp (INT). -- writes ’n’ spaces.
’ACTION’ put_nl. -- writes the new line character, and performs
-- ’put_bf’.
’ACTION’ put_tab. —-- writes the tab character.
’ACTION’ put_qt. -- writes the (double) quote ".
’ACTION’ put_str (STRING) . -- writes a string surrounded with
—— double quotes.
’ACTION’ put_strl (STRING). -- writes a string surrounded with
—-- double quotes, interpretes escaped char’s.
’ACTION’ put_ident (IDENT). -- writes the textual representation of IDENT
’ACTION’ put_pos  (POS). -- writes the position.
ACTION’ put_bf. —-- if the file is '"stdout", then the buffer

-- is written to ‘stdout’;
—— if the file is not ’stdout’ the buffer is
—— written, if it is 90% filled.

-- specifying input files:
’ACTION’ IO_DECLARE (STRING). -- specifies another source file for input.

’ACTION’ IO_NAME (INT -> STRING).
-- Returns for a file number its string representation.



2.12. THE LIBRARY 31

—— The file number may be returned from ERRORS.

2.12.2 The IDENTS module

The IDENTS module provides general identifier handling routines. The scanner usually accepts strings (se-
quences of characters) representing program identifiers. The parser does not use the string representation of
these identifiers but a unique integer value, referring to that string. The enter_ IDENT action computes such a
unique number out of a character sequence, using a hash function. The condition Eq_IDENT is used for test-
ing identifiers for equality. get_ IDENT _name returns the characters of the identifier. The unique “unknown”
identifier is returned using get_No_IDENT. Somentimes one needs some kind of “new” identifiers, which are not
present in the analyzed program. Each call of generate_IDENT returns such a new identifier.

A special feature of this module is to handle additional attributes of identifiers. The string representation
of an identifier is one of them, which is handled by default. Another attribute may be the meaning of the
identifier in the analyzed program. Using this feature a simple definition table of identifiers is manipulated
by predicates DEF_IDENT_ATTR and GET_IDENT_ATTR, which are implemented in C but not declared by
default in Gentle. For an example usage of that see minilaz and hoc from the example library.

If this feature is used, the CPPFLAGS parameter of makemake must be set to

-DNR_OF_IDENT_ATTR=xx, where zz is the number of additional attributes.

The IDENTS module is defined as follows:

’MODULE’ IDENTS

TYPE’ IDENT.
-- general
ACTION’ enter_IDENT (STRING, INT -> IDENT).
—— define a STRING with INT characters as IDENT.
>ACTION’ generate_IDENT (-> IDENT).

-— each call generates a new unique IDENT.
’CONDITION’ Eq_IDENT (IDENT, IDENT).

-- succeeds iff the IDENT’s are equal.
’CONDITION’ NotEq_IDENT (IDENT, IDENT).

—-- succeeds iff the IDENT’s are not equal.

’ACTION’ get_IDENT_name (IDENT -> STRING).
-- returns the textual representation of the IDENT.
?ACTION’ get_No_IDENT (-> IDENT).

-- returns No_IDENT

ACTION? print_IDENT (IDENT).
—— write id to stdout

~
*

To each identifier a number of attributes may be attached.

To use this feature, the user has to define the following type and
action/condition.

The attributes are accessed by numbers.

The maximal number of attributes must be defined when compiling the system.
This is done by defining ’NR_OF_IDENT_ATTR’ with that number.

The attributes are accessed with numbers in the range [1..NR_OF_IDENT_ATTR].
’GET_IDENT_ATTR (Id, Nr -> Attr)’ fails, iff ’DEF_IDENT_ATTR (Id, Nr, Attr)’
was not called before for that identifier and number, i.e. the identifer has
no value for that attribute.

IDENT_ATTR =
some_user_defined_things

or define IDENT_ATTR as an opaque type.

>ACTION’ DEF_IDENT_ATTR (IDENT, INT, IDENT_ATTR).
>CONDITION’ GET_IDENT_ATTR (IDENT, INT -> IDENT_ATTR).

L I R JEE K R NN R R R B K JEE K K NN

Another type name may be used.
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A disadvantage of this method is, that all attributes must have the same
type (IDENT_ATTR) , but all external C procedures are already implemented.

Another way is:
Declare types:

IDENT_ATTR_1
IDENT_ATTR_2

IDENT_ATTR_n

Declare external predicates:
?ACTION’ DEF_IDENT_ATTR_1 (IDENT, IDENT_ATTR_1).

>ACTION’ DEF_IDENT_ATTR_n (IDENT, IDENT_ATTR_n).
’CONDITION’> GET_IDENT_ATTR_1 (IDENT -> IDENT_ATTR_1).

’CONDITION’ GET_IDENT_ATTR_n (IDENT -> IDENT_ATTR_n).

and implement this external predicates in C as:
(Remember, that all opaque values are mapped to ’long’.)

BOOL g_DEF_IDENT_ATTR_1 (ident, attr)
G_IDENT ident; long attr;
{

return g_DEF_IDENT_ATTR (ident, 1, attr);

BOOL g_GET_IDENT_ATTR_1 (ident, attr)
G_IDENT ident; long *attr;

{

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* return g_GET_IDENT_ATTR (ident, 1, attr);
*

*

*

*

*/

2.12.3 The FRRORS module

This module manages error messages emitted by the generated program while analyzing its input. The scanner
computes for each token its position (filename, line, and column number). The predicate GET_-CUR_POS returns
the position of the last token coded into an integer. The problem during parsing is that action predicates must
follow all nonterminal or token predicates, and hence one can get (using this predicate) only the position of the
last token of that grammar rule. A better way is the introduction of a grammar rule POS as follows:

’NONTERM’> POS (-> POS).
POS (-> P): GET_CUR_POS (-> P).

This nonterminal predicate may now be used before each token / nonterminal predicate to determine its position.
The Gentle system uses two programs Lister.c and Unlister.c which are used to merge (remove) the error
messages with (from) the source file.

The ERROR module is defined as follows:

’MODULE’ ERRORS

/* This functions are used to handle error messages emitted by the generated
* program.

* An error message consists of
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* - a position in the source file, where the error is raised

* - a message (string)

* - auxiliary information, like names of identifiers etc.

* The position of an error message is specified by a triple

¥ - file : the file containing the source

* - line number

* - column number

* Several source files may be handled. The error messages are written to
* files named ’ERRORS-<name of source file>-ERRORS’

* If the source file is unknown, the error message is written to ’stderr’.
* The auxiliary information is merged into ’message’. The position in the
* message string is specified as following:

* The character § specifies the position of strings.

* The character @ specifies the position of identifiers.

*/

’TYPE’ P0S. -- position in source file

CONDITION’ IS_ERROR_OCCURED.

—— Succeeds iff an error message was emitted before.
’CONDITION’ NO_ERROR_OCCURED.

-- Succeeds iff no error message was emitted before.

’ACTION’ GET_UNDEF_P0S (-> POS).

-- Returns the undefined position. Also the integer O is allowed.
*ACTION’ ERROR (STRING, POS).

-- Emits an error message.
’ACTION’ ERROR_TXT  (Msg : STRING, Txt: STRING, POS).

—— Emits an error message and replaces ’$’ in Msg by Txt.
’ACTION’ ERROR_IDENT (STRING, IDENT, POS).

-- Emits an error message and replaces ’Q@’ by the textual
-- representation of the IDENT.

’ACTION’ ERR_CVT_TO_PQOS (File : INT, Line : INT, Col : INT -> P0S).
—- Converts filenumber/line/col information into a postion.
’ACTION’ ERR_CVT_FROM_POS (POS -> File : INT, Line : INT, Col : INT).
—-— Converts a position into filenumber/line/col information.
> ACTION’ GET_CUR_POS (-> PO0S).

—— Returns position of the current parsed token in the source text
’CONDITION’ Eq_POS (Posl : POS, Pos2 : P0S).

-- Checks, whether Posl is equal to Pos 2. (file, line and column)
’ACTION’ print_POS (POS).

-— Write pos to stdout.

—- abnormal program termination

-- a message is written to ’stderr’, ’io_close’ is called and then
—— Jexit (n)’ or ’abort()’ is called.

’ACTION’ EXIT (STRING, INT).

ACTION’ ABORT (STRING).

2.12.4 The STRINGS module

Gentle defines a sequence of characters as a STRING, in the sense of C strings. Gentle itself allows string

constants in a Gentle specification.
The STRINGS module is defined as follows:

’MODULE’ STRINGS
’TYPE’ STRING.

?ACTION’ STRING_concat (S1 : STRING, S2 : STRING -> S3 : STRING).
-- 83 := 51 & S2
?ACTION’ STRING_length (STRING -> INT).

’ACTION’ STRING_norm (Str : STRING, Size: INT -> STRING).
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—— makes ’Str’ at least ’Size’ characters long, by adding spaces.

-- The following conditions compare the characters of the two strings.
’CONDITION’ Eq_STRING (Strl : STRING, Str2 : STRING).
’CONDITION’ NotEq_STRING (Strl : STRING, Str2 : STRING).

-- Strl < (>) Str2 in their lexicographic order
’CONDITION’ Less_STRING (Strl : STRING, Str2 : STRING).
’CONDITION’ Greater_STRING (Stril : STRING, Str2 : STRING).

?ACTION’ print_STRING (STRING).

’ACTION’ INT_2_STRING (INT -> STRING).
-- converts the integer value into decimal string representation

2.12.5 The MATH module

A (Gentle specification only supports simple integer arithmetic. Compiling or interpreting a program often
needs a more complex arithmetic. Gentle’s build in integer arithmetic is a signed 32 bit arithmetic (on 32 bit
machines). The floating point arithmetic supported by this module has double precision.

The module MATH is defined as follows:

’MODULE’ MATH
/* The constants used as minimum and maximum values for short, int, and long

* integer values are defined in MATH.h

* Current values are:

* min_shortint = -128 8 bit signed integer

* max_shortint = 127

* min_integer = -32768 16 bit signed integer

* max_integer = 32767

* min_longint = 0x80000000 32 bit signed integer

* max_longint = Ox7FFFFFFF

*

* The Gentle built-in arithmetic is a 32 bit signed arithmetic.
* Real arithmetic is done with double precision.
*/

TYPE’ INT.

’TYPE’ REAL.
-- return the lower and upper bound of the given integer type
’ACTION’ ShortIntMinMax (-> Min : INT, Max : INT).
’ACTION’ IntMinMax (-> Min : INT, Max : INT).
>ACTION’ LongMinMax (-> Min : INT, Max : INT).

-- succeeds, iff the constant fits into that range
’CONDITION’ Is_ShortInt (INT).
’CONDITION’ Is_Integer (INT).
’CONDITION’ Is_LongInt (INT).

-- integer / real comparision

’CONDITION’ Eq_Int (Opt : INT, Op2 : INT). -- Opl == 0Op2
’CONDITION’ NotEq_Int (Opt : INT, Op2 : INT). -- Opl != 0Op2
’CONDITION’ Less_Int (Opt : INT, Op2 : INT). -- Opl < 0p2
’CONDITION’ LessEq_Int (Opt : INT, Op2 : INT). -- Opl <= 0p2
’CONDITION’ Greater_Int (Opt : INT, Op2 : INT). -- Opl > 0p2
’CONDITION’ GreaterEq_Int (Opl : INT, Op2 : INT). -- Opl >= 0p2
’CONDITION’ Eq_Real (Op1 : REAL, Op2 : REAL). -- Opl == 0p2
’CONDITION’ NotEq_Real (Op1 : REAL, Op2 : REAL). -- Opl != 0p2

’CONDITION’ Less_Real (Op1 : REAL, Op2 : REAL). -- Opl < 0p2
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’CONDITION’ LessEq_Real (Op1 : REAL, Op2 : REAL). -- Opl <= 0p2
’CONDITION’ Greater_Real  (Opl : REAL, Op2 : REAL). -- Opl > O0p2
’CONDITION’ GreaterEq_Real (Opl : REAL, Op2 : REAL). -- Opl >= 0p2

-- This constant arithmetic checks operands and the result for over/underflow
—-- Error messages are emitted and 1 / 1.0 is returned in that case.
-- Result := Opl <operand> 0Op2

?ACTION’ Add_Int (POS, Op1l : INT, O0p2: INT -> INT).

ACTION’ Sub_Int (POS, Op1 : INT, Op2: INT -> Result : INT).
’ACTION’ Mult_Int  (POS, Opl : INT, Op2: INT -> Result : INT).
?ACTION’ Mod_Int (POS, Opl : INT, Op2: INT -> Result : INT).
’ACTION’ Div_Int (POS, Op1l : INT, O0Op2: INT -> Result : INT).

’ACTION’ Add_Real  (POS, Opl : REAL, Op2: REAL -> Result : REAL).
ACTION’ Sub_Real (POS, Opl : REAL, Op2: REAL -> Result : REAL).
’ACTION’ Mult_Real (POS, Opl : REAL, Op2: REAL -> Result : REAL).
ACTION’ Div_Real (POS, Op1l : REAL, Op2: REAL -> Result : REAL).
’ACTION’ Power_Real (POS, Opl : REAL, Op2: REAL -> Result : REAL).
’ACTION’ Zero_Real (-> REAL).

’ACTION’ Cvt_Int_To_Real (POS, INT -> REAL).
’ACTION’ Cvt_Real_To_Int (POS, REAL -> INT).

—-- trigonometric functions

ACTION’ math_sin (P0S, REAL -> REAL).
’ACTION’ math_cos  (POS, REAL -> REAL).
ACTION’ math_atan (P0OS, REAL -> REAL).
?ACTION’ math_exp (POS, REAL -> REAL).
ACTION’ math_log (P0S, REAL -> REAL).
’ACTION’ math_loglO (POS, REAL -> REAL).
’ACTION’ math_sqrt (POS, REAL -> REAL).
’ACTION’ math_int (P0OS, REAL -> REAL).
ACTION’ math_abs (P0OS, REAL -> REAL).

—— common constants

ACTION’ math_PI_value (-> REAL). -- Constant pi

ACTION’ math_E_value (-> REAL). -- Base of natural logarithms
ACTION’ math_GAMMA_value (-> REAL). -- Euler-Mascheroni constant
ACTION’ math_DEG_value (-> REAL). -- Degrees per radian
ACTION’ math_PHI_value (-> REAL). -- Golden Ratio

ACTION’ Align (INT, INT -> INT).

-- aligns a value to a given bound

—-- Align (bound, src -> result) computes:

-- rem := src MOD bound;

-- IF rem = 0 THEN result := src ELSE result := src + (bound - rem) END

—-- printing objects of opaque types on to stdout.

’ACTION’ print_INT (INT).
’ACTION’ print_REAL (REAL).

2.12.6 The BOOLEAN module

The BOOLEAN defines the boolean values (true and false) and operation on these values.

The BOOLFEAN module is defined as follows:

’MODULE’ BOOLEAN
BOOLEAN =
true,
false

35
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>CONDITION’ is_true (BOOLEAN).
is_true (true)

CONDITION’ is_false (BOOLEAN).
is_false (false)

’CONDITION’ Eq_BOOLEAN (BOOLEAN, BOOLEAN) .
Eq_BOOLEAN (true, true)
Eq_BOOLEAN (false, false)

ACTION’ and (BOOLEAN, BOOLEAN -> BOOLEAN) .
and (true, true -> true)
and (X, Y -> false)

ACTION’ or (BOOLEAN, BOOLEAN -> BOOLEAN).
or (false, false -> false)
or (X, Y -> true)

ACTION’ not (BOOLEAN -> BOOLEAN).
not (true -> false)
not (false —> true)

’ACTION’ print_BOOLEAN (BOOLEAN) .

2.12.7 The ARRAYS module

The ARRAYS offers fixed sized integer indexed arrays. The elements of the array are terms.
The ARRAYS module is defined as follows:

’MODULE’ ARRAYS
/%

* This module provides a general fixed size array data type.

* Its index type is "INT", its element type may be any Gentle type.

*

* "ARRAY new" : Creates a fixed size array. Its index range is

* ["Lower_bound" .. "Upper_bound"].

* Element type may be any Gentle opaque or term type.
* "ARRAY_dispose" : Removes the (storage of the) array.

* Further use if the array may result in a program

* abortion.

* "ARRAY_assign" : "Array [Index] := Value"

* The "Value" is assigned to the "Array" element with
* the given "Index". "Index" must be in the

* range [Lower_bound .. Upper_bound], specified by

* "ARRAY_new" for this "Array". Otherwise the program
* is aborted and an error message is emited.

* "ARRAY_get" : "Value := Array [Index]"

* "Value" is value of the "Array" element with

* the given "Index" assigned. "Index" must be in the
* range [Lower_bound .. Upper_bound], specified by

* "ARRAY _new" for this "Array". Otherwise the program
* is aborted and an error message is emited.

*

* The user of this module has to declare the signatures of "ARRAY_ assign" and
* "ARRAY_get" predicates using the its own element type.

* If several array types (i.e. with different element type) are needed, for
* each type predicate signatures for the assign and get operation (with

* different names) must be declared.

* The "ARRAY_ assign" and "ARRAY_get" predicate are already implemented as
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external predicates in C.

If other names are used, a small C procedure must be written, to call
"g_ARRAY assign" and "g_ARRAY_get".

For example:

ELEM_1 = ...

ELEM_2 = ... .

’ACTION’ assign_1 (Array : ARRAY, Index : INT, Value : ELEM_1).
’ACTION’ get_1 (Array : ARRAY, Index : INT -> Value : ELEM_1).
’ACTION’ assign_2 (Array : ARRAY, Index : INT, Value : ELEM_2).
’ACTION’ get_2 (Array : ARRAY, Index : INT -> Value : ELEM_2).

and implement this external predicates in C as:

#include "ARRAY.h"
#include "SYS.h"

BOOL g_assign_1 (Array, Index, Value)
int Index;
tARRAY Array;
long Value;
{
g_ARRAY_assign (Array, Index, Value);
return TRUE;

BOOL g_get_1 (Array, Index, Value)

int Index;

tARRAY Array;

long  *Value;

{
g_ARRAY_assign (Array, Index, Value);
return TRUE;

and the same for "g_assign_2" and "g_get_2"

If the "-DUSER_DEFINE_OPAQUE" option is set in the "makemake" command,
printing of an ARRAY is possible by declaring "’ACTION’ print_ARRAY (ARRAY)"
(as usual for all types).
The lower bound and upper bound and all array elements are printed.
The default case for printing array elements is to print their "address".
The user may specify another print routine for the elements, by assigning
the C pointer to function variable

BOOL (*G_print_indented_ARRAY_ELEMENT) ()
the printing routine (see files "ARRAYS.h" and "ARRAYS.c").
This assignment may be done e.g. in "MAIN.c"
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*/
TYPE’ ARRAY.
’ACTION’ ARRAY_new (Lower_bound : INT, Upper_bound : INT -> Array : ARRAY).

’ACTION’ ARRAY dispose (Array : ARRAY).

/*

* ELEMENT =

* some_user_defined_things
*

* or define ELEMENT as an opaque type.
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* Another type name then ELEMENT may be used.

*

* ACTION’ ARRAY_assign (Array : ARRAY, Index : INT, Value : ELEMENT).
* ’ACTION’ ARRAY_get (Array : ARRAY, Index : INT -> Value : ELEMENT).
*/

2.12.8 The STATISTICS module

The STATISTICS module collects information about the UNIX process running the target program. This
information (user time, memory requirements, page faults, etc.) is printed to the standard output device.
The STATISTICS module is defined as follows:

’MODULE’ STATISTICS

/% Collects and prints information about used times, used storage, page faults,
etc. of the current UNIX process to standard output.

To start the meassurement, call ’STATISTICS_init’.

To print the information, call ’STATISTICS_show (Message)’, the ’Message’

is printed before. ’STATISTICS_show’ may be called several times after the
last ’STATISTICS_init’ call.

The output looks like:

show statistics: message
Wed Nov 14 18:58:20 1990

Real time: 3.280 sec
User time: 2.880 sec
System time: 0.340 sec
MemorySize: 312.000 Kb

Major page faults: O
Minor page faults: 46
Times swapped out: 0
File Inputs:

File Outputs:
Signals:

Wait for I/0: 22

¥ O¥ ¥ K K K K K K F K K F K ¥ K ¥ K X ¥ ¥
O = O

*
~

ACTION’ STATISTICS_init.
’ACTION’ STATISTICS_show (Message : STRING).

2.13 The example library

Together with the Gentle system a set of several examples is distributed. Some are small toys, some
are complete compilers, interpreters, and text analyzers. These examples are contained in the directory
$GENTLE_DIR /examples.

glint Analyses Gentle programs and extracts information out of a Gentle specification. (Specified grammar in
BNF notation, cross-reference listing, warnings, etc.)

hoc Hoc [Kernighan ¢ % 78] is a simple programmable interpreter for floating point expressions. It has C-style
control flow, function definition and the usual numerical built-in functions such as cosine and logarithm.

minilax The programming language MiniLAX (Mini LAnguage eXample) is a Pascal relative. To be more
specific, it is a subset of the example language LAX used in the text book [Waite ¢ @ 84]. MiniLAX
contains a carefully selected set of language concepts relevant for compiler construction: types, type
coercion, overloaded operators, arrays, procedures with reference and value parameters, nested scopes. A
compiler for MiniLAX and target processor MC 68020 (Motorola) is specified.

tpnet Shows how TABLE’s may be used to represent graphs. The program is used to specify a network of
Transputers and computes the minimal spanning connection tree, which may be used to down load code
to a Transputer net.
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simple A compiler for a simple language, having only assignments and expressions and a simple idealized
processor (bspl). Simple constant folding (bsp2).



Chapter 3

Writing an Interpreter Using Gentle

3.1 Introduction

This chapter presents the development of a more complex Gentle system, than the examples given in the language
reference manual. The goal of this tutorial is the specification of an interpreter for Hoc. Hoc [Kernighan ¢ o 78]
is an interactive language for floating point arithmetic. It has C—style control flow, function definition, and the
usual numerical built-in functions such as cosine and logarithm.

The way this tutorial proceeds is analogous to that presented in [Kernighan ¢*  78]. The interpreter is devel-
oped in eight steps, starting with a simple integer expression interpreter, going over to floating point arithmetic
and control flow constructs to the complete Hoc interpreter. Each step adds new difficulties and solutions. On
this way most of the written specification of earlier steps may be reused.

First the Hoc language is defined in section 3.2. A first impression of a Gentle specification gives section 3.3
by implementing a simple integer expression interpreter (hoc0). The first real step towards Hoc is presented in
section 3.4, where the complete floating point arithmetic interpreter is specified (hocl). The next two sections
add variables and the standard functions to the interpreter (hoc2, hoc3). Hoc4 in section 3.7 changes the
interpreter significantly, by introducing two—pass interpreting, i.e. first construct an intermediate representation
of the program and then interprete it. Section 3.8 includes control flow constructs, like conditionals and loops.
Section 3.9 changes the interpretation of loops from recursion into a loop over cyclic graphs. The complete Hoc
interpreter is given in section 3.10 (hoc6).

Together with the Gentle system, an example library is distributed. This library contains in the directory
$GENTLE_DIR /example/hoc all steps of this development. The steps are named hoc0 ... hoc6 and the inter-
preters for the sub—languages are contained in subdirectories with that names.

An executable Hoc interpreter is contained in the example library distributed together with Gentle. For its
usage refer to the manual pages (i.e. try man hoc).

3.2 HOC Language Reference Manual

Hoc — An Interactive Language For Floating Point Arithmetic!
Brian Kernighan
Rob Pike

Hoc is a simple programmable interpreter for floating point expressions. It has C—style control flow,
function definition and the usual numerical built—in functions such as cosine and logarithm.

3.2.1 Expressions

Hoc 2 is an expression language, much like C: although there are several control-flow statements, most statements
such as assignments are expressions whose value is disregarded. For example, the assignment operator = assigns

Ipublished in [Kernighan ¢t @/ 78]
2some minor changes of the Gentle implementation are marked with t

40



3.2. HOC LANGUAGE REFERENCE MANUAL 41

the value of its right operand to its left operand, and yields the value, so multiple assignments work. The
expression grammer is:
expr: number

variable

( expr )

I
I
| expr binop expr
| unop expr
[

function ( arguments )

Numbers are floating point. The input format is that recognized by scanf (3): digits, decimal point, digits, e or
E, signed exponent. At least one digit or decimal point must be present; the other components are optional.
Variable names are formed from a letter followed by a string of letters and numbers3. binop refers to binary
operators such as addition or logical comparision; unop refers to the two negation operators, “!” (logical
negation, “not”) and “-” (arithmetic negation, sign change). Table 3.1 lists the operators.

exponentation (FORTRAN #*), right associative

! - (unary) logical and arithmetic negation

* multiplication, division

+ - addition, subtraction

> >= relational operators: greater, greater or equal
< <= less, less or equal

== I= equal, not equal (all the same preceedence)
&& logical AND (both operands always evaluated)
I logical OR (both operands always evaluated)

= assignment, right associative

Table 3.1: Operators, in decreasing order of precedence

Functions, as decribed later, may be defined by the user. Function arguments are expressions separated by
commas. There are also a number of built-in functions, all of which take a single argument, described in
Table 3.2.

abs (x) |z|, absolute value of x

atan (x) arc tangent of x

cos (x) cos (x), cosine of x

exp (x) e®, exponential of x

int (x) interger part of x, truncated towards zero
log (x) log (x) logarithm base e of x

logl0 (x) log (x) logarithm base 10 of x

sin (%) sin (x), sine of x

sqrt (x) Vz,z/?

Table 3.2: Built-in Functions

Logical expressions have values 1.0 (true) and 0.0 (false). As in C, any non-zero value is taken to be true. As
always the case with floating point numbers, equality comparisons are inherently suspect.
Hoc also has a few built—in constants, shown in Table 3.3.

3and the _ (underscore) character t
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3.2.2 Statements and Control Flow
Hoc statements have the following grammer:

stmt: expr
| variable = expr
| procedure ( arglist )
| while ( expr ) stmt
| if ( expr ) stmt
| if ( expr ) stmt else stmt
| { stmtlist }
| print expr-list
| return optional--expr .
stmtlist: (nothing)
| stmtlist stmt .
An assignment is parsed by default as a statement rather than an expression, so assignments typed interactively
do not print their value.

Note that semicolons are not special to Hoc : statements are terminated by newlines*
This causes some peculiar behaviour. The following are legal if statements:

if (x < 0) print (y) else print (z)

if (x < 0)

print (y)
else

print (z)

In the second example, the braces are mandatory: the newline after the if would terminate the statement and
produce a syntax error were brace omitted.

The syntax and semantics of Hoc control flow facilities are bassically the same as in C. The while and the if
statements are just as in C, except there are no break or continue statements.

3.2.3 Input and Output: read and print

The input function read, like the other built—ins, takes a single argument. Unlike the built—ins, though, the
argument is not an expression: it is the name of a variable. The next number (as defined above) is read from
the standard input and assigned to the named variable. The return value of read is 1 (true) if a variable was
read, and 0 (false) if read encountered end of file or an error.

Output is generated with the print statement. The arguments to print are a comma separated list of expressions
and strings in double quotes, as in C. Newlines must be supplied; they are never provided automatically by
print.

Note that read is a special built—in function, and therefore takes a single parenthesized argument, while print is
a statement that takes a comma—separated unparenthesized list:

4All chacraters after -- up to the end of the line are treates as comment. }

DEG  57.29577951308232087680 180/m, degrees per radian

E 2.71828182845904523536 e, base of natural logarithms
GAMMA 0.57721566490153286060 <y, Euler-Mascheroni constant

PHI  1.61803398874989484820 (v/5 +1)/2, the golden ratio

PI 3.14159265358979323846 1w, circular transcendental number

Table 3.3: Built-in Constants
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while (read (x))

print "value is ", x, "\n"

3.2.4 Functions and Procedures

Functions and procedures are distinct in Hoc , although they are defined by the same mechanism. This distinc-
tion is simply for run—time checking: it is an error for a procedure to return a value, and for a function not to
return one.
The definition syntax is:
function: func name () stmt .
procedure: proc name () stmt .
name may be the name of any variable — built—in functions are excluded. The definition, up to the opening
brace or statement, must be on one line, as with the if statement above.
Unlike C, the body of a function or procedure may be any statement, not necessarily a compound (brace-
enclosed) statement. Since semicolons have no meaning in Hoc , a null procedure body is formed by an empty
pair of braces.
Functions and procedures may take arguments, separated by commas, when invoked. Arguments are referred to
as in the shell: $§3 refers to the third (1-indexed) argument. They are passed by value and within functions are
semantically equivalent to variables. It is an error to refer to an argument numbered greater than the number
of arguments passed to the routine. The error checking is done dynamically, however, so a routine may have
variable numbers of arguments if initial arguments affect the number of arguments to be referenced (as in C’s
printf).
Functions and procedures may recurse, but the stack has limited depth (about a hundred calls)®. The following
shows a Hoc definition of Ackermann’s function:
func ackermann ()

if ($1 == 0) return $2+1

if ($2 == 0) return ackermann ($1-1, 1)

return ackermann ($1-1, ackermann ($1, $2-1))
ackermann (3,2)

29
ackermann (3,3)

61
ackermann (3,4)

125

3.2.5 Examples
Stirling’s formula:

nl o~ V20 w(nfe) n(l+ &)

func stirling O

return sqrt(2*$1*PI) * ($1/E)"$1*(1 + 1/(12%$1))
stirling (10)

3628684 .7
stirling (20)

2.4328818e+18

Factorial function, n!:

5In the Gentle implementation, this is limited only by the amount of memory available .
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func facl ()
if ($1 <= 0) return 1 else return $1 * fac ($1-1)

Ratio of factorial to Stirling approximation:
i=9
while ((i = i+1) <= 20)

print i, " ", fac (i) / stirling (i), "\n"
10 1.0000318
11 1.0000265
12 1.0000224
13 1.0000192
14 1.0000166
15 1.0000146
16 1.0000128
17 1.0000114
18 1.0000102
19 1.0000092
20 1.0000083

3.3 An integer expression interpreter, HocO

The first language reads integer expressions with + - * / operations from a file and computes the result. The
built—in integer arithmetic of the Gentle system is used to compute the result, while parsing proceeds. An
expression is terminated by the newline character. The operators are left associative.

3.3.1 The scanner

The used scanner generator rex and its input syntax is given in [Grosch 87].
The scanner specification is contained in file SCANNER.rex . Since only integer numbers are processed, only
the NUMBER token has a single attribute. The error attribute computing procedure looks like:

/* procedure returning error attributes */
void ErrorAttribute (Token, Attribute)

int Token;

tScanAttribute *Attribute;

{
switch (Token) {
case g_NUMBER : Attribute->attrl = 0; break;
default : Attribute->attrl = 0; break;
}
}

The syntax of the description of the regular expressions is defined in [Grosch 87]. Now the regular expressions
for the tokens must be defined:

RULES

/* new line character */

#STD# \n : { yyEol (0); return g _NL;}
/* integer numbers */

#STD# {0-9} + : {GetWord (word);

sscanf (word, "%d", &Attribute.attrl);

/* sscanf converts numbers contained in a
sequence of characters into a numerical
value. It is contained in the C library
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*/
return g_NUMBER;}
/* operators */

#STD# "+" : {return g_PLUS;}
#STD# "-" : {return g_MINUS;}
#STD# "*" : {return g_MULT;}
#STD# "/" : {return g _DIV;}
#STD# " (" : {return g_LEFTPAR;}
#STD# ")" : {return g_RIGHTPAR;}

The procedure yyEol must be called in the rule for the new line token, to compute the line and column
information correctly, see [Grosch 87].

3.3.2 The Gentle specification
The Gentle specification for this language is contained in file hocO_inter.g and is given by:

’MODULE’ hocO_inter

TOKEN’ NL.

’TOKEN’ PLUS.

’TOKEN’ MINUS.

’TOKEN’ MULT.

’TOKEN’ DIV.

’TOKEN’ LEFTPAR.

’TOKEN’ RIGHTPAR.
>TOKEN’ NUMBER (-> INT).

’NONTERM’ ROOT.

’NONTERM’ List.
List :
List : List NL.
List : List Expr (-> Val) NL
put_sl ("\\t") put_d (Val) put_s1 ("\\n")

—— Expression Grammar

’NONTERM’> Expr (-> INT).

Expr (-> I): SimpleExpr (-> I)

’NONTERM’> SimpleExpr (-> INT).

SimpleExpr (-> I) : Term (-> I)

SimpleExpr (-> I1 + I2): SimpleExpr (-> I1) PLUS Term (-> I2)
SimpleExpr (-> I1 - I2): SimpleExpr (-> I1) MINUS Term (-> I2)

’NONTERM’ Term (-> INT).

Term (-> I) : Unary (-> I)
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Term (-> I1 * I2): Term (-> I1) MULT Unary (-> I2)
Term (-> I1 / I2): Term (-> I1) DIV Unary (-> I2)

’NONTERM’> Unary (-> INT).

Unary (-> I) : Factor (-> I)
Unary (-> 0-I): MINUS Factor (-> I)

’NONTERM’ Factor (-> INT).

Factor (-> I): NUMBER (-> I)
Factor (-> I): LEFTPAR Expr (-> I) RIGHTPAR .

The put_ action predicates are defined in the IO library and write strings and integers to the standard output
device.

3.3.3 Other work

The makefile generator makemake must be parameterized as follows: NAME=HOCO, DEST=<destination
directory>, the ~-DUSER DEFINE_OPAQUE flag must be set in CPPFLAGS.

3.3.4 Generating and running the HocO interpreter

After writing all these specifications and modifying the given programs and UNIX shell scripts, two steps are
needed to generate the Hoc0 interpreter: First, the makefile must be generated using the makemake command
(see section 2.5). Second the make process must be started by the make command. After make has finished,
the interpreter may started.

$ makemake RETURN key

GENTLEDIR = /usr/local/lib/gentle

$ make RETURN key

cc —¢ -I/usr/local/lib/gentle/reuse -DUSER_DEFINE_QPAQUE

-DNR_OF_IDENT_ATTR=1 aux.c

/usr/local/lib/gentle/bin/gentle -noedit grammar.g BOOLEAN.g ERRORS.g IDENTS.g

I0.g MATH.g STATISTICS.g STRINGS.g aux.g calc.g exec.g grammar.g obj.g

Gentle: 3.9 92/08/25

Changed: g.cfg

Changed: g.grammar.c

Changed: g.tokens.h

/usr/local/lib/gentle/bin/make-scanner

Warning: in start state STD the default action may be triggered by:

lot more of information

$ g.HOCO RETURN key

1+ 2 RETURN key

3
Control-D key, terminates the interpreter

$
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3.4 A floating point expression interpreter, Hocl

The first step towards Hoc is the interpretation of floating point expressions. Relational, logical operators
and the exponentiation operator are added. The “boolean” values are represented as floating point numbers,
where FALSE is coded as 0.0 and each other value codes TRUE (usually 1.0). The language allows Ada style
comments. All characters after —— up to the end of the line are treated as comment.

Because the Gentle language does not support floating point computations, this must be done by external
predicates, which are defined in the library module MATH.

3.4.1 The scanner

The ErrorAttribute procedure must be changed in the NUMBER case, since the attribute type has been changed
from int to double (see section 2.8). The new operators must be added, too. Only the regular expression for
comments and floating point numbers will be given here:

/* single line comments (Ada - style) */
#STD# "--" ANY * \n :- {yyEol (0); return g _NL;}

/* real numbers */
#STD# digit + ,
#STD# digit + "." digit * (("E"|"e") {+\-} 7 digit +) 7 :
: {GetWord (word);
Attribute.attrl = (double #*)G_pool_alloc (sizeof (double));
sscanf (word, "%1f", Attribute.attrl);
return g_NUMBER;}

3.4.2 The Gentle specification

The grammar has changed to reflect the more complex precedence rules of the various operators. The actual
computations of values is done during parsing, using the predicates defined in the MATH library. Some grammar
rules (contained in file grammar.g) are:

NONTERM’ Expr (-> REAL).

Expr (-> R): EO (-> R) .

’NONTERM’ EO (-> REAL). -- or

EO (<> R): E1 (->R) .

EO (-> R): EO (-> R1) OR E1 (-> R2)
Calc2 (or, R1, R2 -> R) .

’NONTERM’ E1 (-> REAL). —- and

El1 (> R): E2 (-> R) .

E1 (-> R): E1 (-> R1) AND E2 (-> R2)
Calc2 (and, R1, R2 -> R) .

NONTERM’ E2 (-> REAL). —— <, <=, >, >=, ==, I=

E2 (<> R): E3 (-> R) .

E2 (-> R): E2 (-> R1) RELOP (-> Op) E3 (-> R2)
Calc2 (Op, R1, R2 -> R) .

’NONTERM’ RELOP (-> OPERAND) .

RELOP (-> less) : LESS.
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The predicates implementing the calculations are contained in module calc. The ... REAL predicates are defined
in module MATH.

—-- often used values
VAR’ REAL Zero.
VAR’ REAL One.

OPERAND = plus, minus, .....

’ACTION’ Calc2 (OPERAND, REAL, REAL -> REAL).

—-- computes binary expressions

—-- The value 0 is used for the "undefined" position.

Calc2 (plus, Argl, Arg2 -> Res): Add_Real (0, Argl, Arg2 -> Res).
Calc2 (minus, Argl, Arg2 -> Res): Sub_Real (0, Argl, Arg2 -> Res).
Calc2 (mult, Argl, Arg2 -> Res): Mult_Real (0, Argl, Arg2 -> Res).
Calc2 (div, Argl, Arg2 -> Res): Div_Real (0, Argl, Arg2 -> Res).
Calc2 (power, Argl, Arg2 -> Res): Power_Real (0, Argl, Arg2 -> Res).

-- (el AND e2) is true (1.0), iff (el != 0.0 and e2 != 0.0)
Calc2 (and, Argl, Arg2 -> One) :

NotEq_Real (Zero, Argl)

NotEq_Real (Zero, Arg2)

Calc2 (and, Argl, Arg2 -> Zero)

The global variables Zero and One must be initialized before they are used. The right place for such a kind of
initialization is before parsing starts. This is done by introducing a nonterminal predicate INIT, which accepts
nothing, but just calls the action predicate init,which does the actual initializations:

’NONTERM’ ROOT. -- the first nonterm
ROOT: INIT Parse (....) ....

’NONTERM’> INIT.
INIT : init .

JACTION’ init.

init : CvtIntToReal (0, 0 -> Z)
Zero <- Z
CvtIntToReal (0, 1 -> 0)
One <- 0

3.5 Using variables, Hoc2

This section shows, how Hoc variables may be implemented. A variable is declared when a value is assigned. It
is an error to use undeclared variables. A variable may be assigned more than once.

The problem, which must be solved here, is that a mapping from identifiers to values must be defined /
implemented. Compiler writers call this mapping a symbol or definition table. The simplest (and fastest)
solution is to use the possibility to attach several attributes to identifiers, which is offered by the IDENTS
library.

3.5.1 The scanner

A regular expression for identifiers must be specified. The number of attributes a single token has does not
change and is again one. The ErrorAttribute procedure must be extended (see section 2.8).
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/* identifiers (Hoc / Modula - style) */

#STD# letter (letter | digit) * :
{length = GetWord (word);
g_enter_IDENT(word, length, &(Attribute.attrl));
return g_IDENTIFIER;}

3.5.2 The Gentle specification
Objects

The new feature of hoc2 is the notion of an “object”. Each identifier (i.e. variable) has an additional attribute,
specifying this object (i.e. floating point value). The library module IDENTS offers manipulation of such
identifier attributes using the predicates DEF_IDENT_ATTR and GET_IDENT_ATTR. These predicates are not defined
in IDENTS, because the kind (type) of the objects is defined by the user of the library. GET_IDENT_ATTR is a
condition predicate, which succeeds only if the attribute was defined before:

’ACTION’ DEF_IDENT_ATTR (IDENT, INT, OBJECT). -- external
’CONDITION’ GET_IDENT_ATTR (IDENT, INT -> OBJECT). -- external

Three predicates are defined dealing with objects: DefMeaning, which defines a meaning of an identifier. The
other steps of the development of Hoc will add more objects, and hence it is checked, that only undefined identi-
fiers get a variable meaning and only for identifiers denoting variables the value may be redefined. GetMeaning
succeeds only if the identifier has a defined meaning, and returns in that case the object. GetValue returns the
value of a variable, if it is defined. If an error occurs in a Hoc program an error message is printed and usually
the value 0.0 is returned.

0BJECT =
variable (REAL) -- each variable has a value

’ACTION’ DefMeaning (IDENT, OBJECT).

-- Associates an object with an identifier.
-— Only variable identifiers may get a new value.

DefMeaning (Id, variable (NewValue)):
GetMeaning (Id -> variable (0ldValue))
-- checks, whether ’Id’ is already declared as avariable, since
-- only variable objects are allowed to be redefined.
DEF_IDENT_ATTR (Id, 1, variable (NewValue)).

DefMeaning (Id, 0bj): DEF_IDENT_ATTR (Id, 1, 0Obj).
-— Now ’Id’ is an undeclared identifier.

’CONDITION’ GetMeaning (IDENT -> OBJECT).

GetMeaning (Id -> 0bj): GET_IDENT_ATTR (Id, 1 -> 0Obj)

’ACTION’ GetValue (IDENT -> REAL).

GetValue (Id -> Value): GetMeaning (Id -> variable (Value))

GetValue (Id -> Zero): ERROR_IDENT (" ’@’ is not a variable", Id, 0)
-— Zero is a global variable, holding the value 0.0

These definitions are contained in module obj. The last clause shows the handling of errors using predicates
contained in the FRRORS module. Because we don’t include positional information the “undefined” position
denoted by 0 is used.
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The grammar part

New tokens and nonterminal rules for identifiers and assignments are added. The definition of a variable is done
by assignment, a variable is used in an expression. Assignments have a result (as in C) and hence may occur in
two contexts: first at “top level” and second inside of expressions.

List :
List IDENTIFIER (-> Id) ASSIGN Expr (-> Val) NL
DefMeaning (Id, variable (Val))

Expr (-> R):
IDENTIFIER (-> Id) ASSIGN Expr (-> R)
DefMeaning (Id, variable (R))

E7 (-> R):
IDENTIFIER (-> Id)
GetValue (Id -> R)

The fact that assignment occurs in two contexts causes a “read — reduce” or “shift — reduce” called conflict.
The lalr parser generator emits the following information in the file _Debug and offers a default resolution of
that situation, namely to shift, which is in our case the desired resolution. The dotted lines show the derivation
trees which cause the conflict. For more information see [Vielsack 88].

State 49
g_ROOT End-of-Tokens
g_INIT g_List

g_List g_Expr g_NL

g_IDENTIFIER g_ASSIGN g_Expr

reduce g_Expr -> g_IDENTIFIER g_ASSIGN g_Expr. {g_NL} 7

g_ROOT End-of-Tokens
g_INIT g_List
g_List g_IDENTIFIER g_ASSIGN g Expr g_NL

read g_List -> g_List g_IDENTIFIER g_ASSIGN g_Expr.g NL 7

ignored g_Expr -> g_IDENTIFIER g_ASSIGN g_Expr. {g_NL}
retained g_List -> g_List g _IDENTIFIER g_ASSIGN g_Expr.g_NL

3.5.3 Other work

The makemake files must be adapted accordingly using the new system name (HOC2). Besides that, it
must be specified in makemake, that one attribute is attached to identifiers. This is done by including
-DNR_OF_IDENT-ATTR=1 in the CPPFLAGS parameter.

3.6 Standard procedures, Hoc3

In Hoc3 standard procedures (like sin, cos, . ..) and predefined constants (like 7,7, ...) are included. Two ways
exist to implement this: First, introducing new tokens representing the predefined names and handle these
tokens in a special way or second, declaring the names like other identifiers and treat the predefined functions
as ordinary functions and constants as variables. We choose the second way.
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3.6.1 The Gentle specification

The Gentle specification changes mainly in three points: The grammar must be changed to reflect the structure
of standard function calls. New objects must be defined, representing the predefined functions and constants.
Last but not least, the evaluation of function calls must be implemented.

The grammar
The change in the grammar is very small. The grammar rule:

E7 (-> R):
IDENTIFIER (-> Id) LEFTPAR Expr (-> Arg) RIGHTPAR
EvalFunction (Id, Arg -> R)

must be added to the nonterminal E7.

Objects
Each standard function is a new object and hence the object type looks like:

OBJECT =
variable (REAL), -- each variable has a value
-— built-in functions
func_sin, func_cos, func_atan, func_exp, func_log, func_loglO,
func_sqrt, func_int, func_abs .

A new clause for the DefMeaning predicate must be specified, which checks that a standard function is not
redefined.

DefMeaning (Id, 0Obj):
GetMeaning (Id -> Func)
IsBuiltInFunc (Func)
ERROR_IDENT ("’@’ is already declared as built-in function.",Id, 0)

’CONDITION’ IsBuiltInFunc (OBJECT).

IsBuiltInFunc (func_sin):
IsBuiltInFunc (func_cos):
IsBuiltInFunc (func_atan):

Predefined constants are implemented as ordinary variables. (A bug (or feature??) is that predefined constants
may get a new value). The meaning of the predefined identifiers must be declared in the init predicate.
The enter_IDENT action predicate from the IDENTS module declares the identifiers, DefMeaning declares the
meaning of that identifier.

-- enter predefined names (constants/functions)
enter_IDENT ("sin", 3 -> Sin) DefMeaning (Sin, func_sin)
enter_IDENT ("cos", 3 -> Cos) DefMeaning (Cos, func_cos)

math_PI_value (-> Pi_val)
math_E_value (-> E_val)

enter_IDENT ("PI", 2 -> Pi) DefMeaning (Pi, variable (Pi_val))
enter_IDENT ("E", 1 -> E) DefMeaning (E, variable (E_val))
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Evaluation of function calls

The function application is implemented by the EvalFunction predicate. It checks that the identifier is defined.
The EvalFunc predicate checks that the object is a standard procedure. The EvalBuiltInFunc applies the
function to the passed value.

’ACTION’ EvalFunction (IDENT, REAL -> REAL).

—- checks, that ’IDENT’ is a function name and returns the value of ’f(x)°’
EvalFunction (Id, Val -> R):

GetMeaning (Id -> Object)

EvalFunc (Id, Object, Val-> R)
EvalFunction (Id, Val -> Zero):

ERROR_IDENT ("undeclared identifier ’@’ ", Id, 0)

ACTION’ EvalFunc (IDENT, OBJECT, REAL -> REAL).
EvalFunc (Id, Func, Arg -> R):
IsBuiltInFunc (Func)
EvalBuiltInFunc (Func, Arg -> R)
EvalFunc (Id, 0Obj, Arg -> Zero):
ERROR_IDENT ("’@’ is not declared as function", Id, 0)

’ACTION’ EvalBuiltInFunc (OBJECT, REAL -> REAL).

EvalBuiltInFunc (func_sin, Arg -> R): math_sin (0, Arg -> R).
EvalBuiltInFunc (func_cos, Arg -> R): math_cos (0, Arg -> R).

3.6.2 Other work
The makemake files must be adapted accordingly, using the new name of the system (HOCS).

3.7 Construct an intermediate language, Hoc4

The language of hoc4 is not changed in comparision to hoc3 but the implementation is changed significantly. The
main point is that the parser constructs an intermediate representation for expressions, instead of evaluating
them directly. After an expression is parsed, the expression tree is traversed and evaluated. The previous
evaluation routines are reused.

3.7.1 The Gentle specification

First the representation of expressions is defined using terms:

TREE =
const (REAL) ,
ident (IDENT),
unary (OPERAND, TREE),
binary (OPERAND, TREE, TREE),
assign (IDENT, TREE),

func_call (IDENT, TREE)

The evaluation predicate for expression trees has a TREE as input and returns the result as a REAL. The idea is
first to evaluate the sub—expressions of a tree node (expression) and then apply the operation on the results. It
uses the predicates, defined in the earlier versions of Hoc and looks like:

’ACTION’ Evaluate (TREE -> REAL).

Evaluate (const (R) -> R) :
Evaluate (ident (Id) -> R):
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GetValue (Id -> R)
Evaluate (unary (Op, T) -> R):
Evaluate (T -> Arg)
Calcl (Op, Arg -> R)
Evaluate (binary (Op, T1, T2) -> R):
Evaluate (T1 -> Left) Evaluate (T2 -> Right)
Calc2 (Op, Left, Right -> R)
Evaluate (func_call (Id, Args) -> R):
EvalFunction (Id, Args -> R)
Evaluate (assign (Id, T) -> Arg):
Evaluate (T -> Arg)
DefMeaning (Id, variable (Arg))

The EvalFunction predicate must also be modified, because now the function argument is a TREE instead of a
REAL value.

’ACTION’ EvalFunction (IDENT, TREE -> REAL).

EvalFunction (Id, Arg -> R):
GetMeaning (Id -> Object)
Evaluate (Arg -> Val)

-— execute function code
EvalFunc (Id, Object, Val-> R)

The EvalFunc and EvalBuiltInFunc predicates are not changed, the function argument is evaluated before
they are called.

The grammar

The grammar specification must be modified by changing the result parameter of the nonterminal rules. The
List nonterminal is extended by the action, which calls the evaluation of the parsed expression.

List :
List Expr (-> T) NL
print_Expression (T)
Evaluate (T -> Val)
put_s1 ("\\t")
put_r (Val)
put_si ("\\n")

Only some grammar rules are shown as representative for the modifications needed:

’NONTERM’> Expr (-> TREE). -- assign

Expr (-> T): EO (-> T)
Expr (-> assign (Id, T)): IDENTIFIER (-> Id) ASSIGN Expr (-> T)

’NONTERM’> EO (-> TREE). -- or

EO (> T): E1 (->T)
EO (-> binary (or, Ti, T2)): EO (-> T1) OR E1 (-> T2)

’NONTERM’ E1 (-> TREE). -- and

El (> T): E2 (> T)
E1 (-> binary (and, T1, T2)): E1 (-> T1) AND E2 (-> T2)

’NONTERM’ E7 (-> TREE). -- numbers, var-access, func-call

E7 (-> const (R)): NUMBER (-> R)
E7 (-> ident (Id)): IDENTIFIER (-> Id)
E7 (-> T): LEFTPAR Expr (-> T) RIGHTPAR .
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E7 (-> func_call (Id, Arg)):
IDENTIFIER (-> Id) LEFTPAR Expr (-> Arg) RIGHTPAR .

3.7.2 Other work

The makemake files must be adapted accordingly, using the new name of the system (HOCY).

For testing purposes it is sometimes useful to print terms. One way doing this is to print it always, or to print it
only if a command line parameter is read, when the program is started. The second possibility is taken, which
also shows, how the MAIN program must be changed to to this. The actual printing of term is performed by
the generated predicates print_Type, where Type is a type name of the term.

A new external predicate is introduced to check whether the command line option -print was given. This
predicate is implemented in file auz.c, and hence auz.o must be assigned to the OBJS parameter of makemake.
Calling the hoc4 program with the -print command line option prints the expression tree onto the standard
output device. A variable print_option holding the values 1 or 0 if the option was given or not is used. In the
MAIN.c file, the loop scanning the command line looks like:

while (i < arge) {

if (strcmp (argv[il, "-print") == 0) { /* new */
print_option = 1; /* new */
} else /* new */

{g_IO_DECLARE(argv[il); inputs ++;}
it++;

}

The files auz.g and auz.c look like:

MODULE’ aux
’CONDITION’ is_print_Option_set.
-- succeeds, iff hoc was called with ’-print’ option.

The implementation of this external predicate is contained in file auz.c and looks like:

#include "SYS.h"
#include <stdio.h>
long print_option = 0; /* boolean flag, used to store whether the ’-print’ option is set */

/* implementation of ’CONDITION’ is_print_Option_set’ */
BOOL g_is_print_Option_set ()
{ return (print_option == 1) 7 TRUE : FALSE; }

The predicate print Expression uses the (by Gentle) generated term printing predicate print_TREE and is
defined as:

?ACTION’ print_Expression (TREE).

-- prints the expression on ’stdout’, if hoc is called with "-print" option
print_Expression (T):

is_print_Option_set

print_TREE (T)

print_Expression (T)

’ACTION’ print_TREE (TREE).

-- generated output routine.

3.8 Control flow, Hocba

This section adds if, while statements and statement sequences to hoc4. Again the statements are represented
as terms, forming a list of statements. This list is then interpreted. The list definition looks like®:

6The specification of the interpretation of statement is contained in file ezec.g
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STMT =
stmts (STMTS) ,
assign (IDENT, TREE),
if (TREE, STMT, STMT),
while (TREE, STMT),
print (TREE) ,
prints (STRING),
null. -- for empty else part of an if-stmt

-— a list of statements is formed as STMTS
STMTS =

s (STMT, STMTS),

nil .

3.8.1 The scanner and parser

The scanner must be extended for the new keywords. The parser must get new rules for accepting the state-
ments. Our implementation raises a read-reduce (dangling else) and a reduce-reduce conflict. They are solved
automatically by the parser generator lalr in the default way, i.e. for the read—reduce conflict, the production
reading the token is selected and for the reduce-reduce conflict the textual first grammar rule is selected (see
[Vielsack 88]).

A critical point is the list of statements. If one constructs the term, the list is constructed in reverse order.
This could be avoided using right recursion over the statement list, but the drawback of right recursion is that
the interactive mode of parsing the input is no more possible (because for right recursion, the entire text must
be present). The method used here is to build it in the “right” order by appending a new statement at the end
of the list.

’ACTION’ Append_STMTS (STMTS, STMT -> STMTS).

-- appends a statement to a statement list

Append_STMTS (nil, S -> s(S, nil))

Append _STMTS (s(S1, L1), S2 -> s(S1, L2)):
Append_STMTS (L1, S2 -> L2)

’NONTERM’> StmtList (-> STMTS).

StmtList (-> nil)
StmtList (-> S):
StmtList (-> S) NL

StmtList (-> L1):
StmtList (-> L) Stmt (-> S) NL
Append_STMTS (L, S -> L1)

Stmt (-> while (T, S)):
WHILE Condition (-> T) Stmt (-> S)

The “top level” rule initiating the entire process is specified now as:

List :
List Stmt (-> S) NL
print_Statements (S)
Execute (S)
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3.8.2 Interpretation of statements

The interpretation of the assignment statement and statement list are quite obivous. For the if statement the
conditional expression is evaluated and then the corresponding statement is executed. This is done by two
clauses for the if statement, the first evaluates the conditional expression and tests for TRUE. If the condition
predicate NotEq-Real succeeds, the then part statements are executed. If this condition predicate fails, the next
clause is tried, which executes the else statement. The conditional expression must not be evaluated again.
The while statement is transformed to:

if Condition then {Body ; { while ( Condition ) Bodyl}}

and then interpreted. If the conditional expression evaluates to FALSE (i.e. 0.0) the interpretation of the loop
is finished. Notice: this kind of interpretation creates a new statement list for each iteration of the loop. The
entire Execute predicate:

ACTION’ Execute (STMT).

Execute (stmts (L)):
ExecList (L)

Execute (assign (Id, T)):
Evaluate (T -> Arg)
DefMeaning (Id, variable (Arg))

Execute (if (Cond, ThenStmt, ElseStmt)):
Evaluate (Cond -> CondVal)
NotEq_Real (Zero, CondVal)
Execute (ThenStmt)

Execute (if (Cond, ThenStmt, ElseStmt)):
Execute (ElseStmt)

Execute (while (Cond, Body)):
Evaluate (Cond -> CondVal)
NotEq_Real (Zero, CondVal)
Execute (stmts (s(Body, s(while (Cond, Body), nil))))

Execute (while (Cond, Body)) : . -- if Cond evaluates to false
Execute (print (T)):

Evaluate (T -> R)

put_r (R)
Execute (prints (Str)):

put_s1 (Str)

Execute (null)

’ACTION’ ExecList (STMTS).

—- Executes a list of statements.
ExecList (nil)
ExecList (s(S,L)):

Execute (S)

ExecList (L)

The print and prints statements are inserted to have a uniform handling of printing values and strings. These
two features are fully implemented in hocé.

3.8.3 Other work
The makemake files must be adapted accordingly, using the new name of the system (HOC5a).
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For printing statements new routines are written, because the generated print _STMT predicate would print
them as trees, which is awful to read. The implemented routines start each statement on a new line, without
indentation (see file ezec.g).

3.9 Loops using cyclic graphs, Hocb

Another way implementing loops is to use jumps to some point of a statement list. The while loop may be
translated to:

label (lab); if Condition then { Body ; goto (lab) }

Where label (lab) marks the start of the loop, goto (1lab) performs the jump, lab is a unique name of the
label. Using terms only, it is impossible to implement this kind of loop interpretation, because the goto (lab)
statement refers to “another place” in the same term, i.e. needs a cyclic graph.

A method to simulate such cyclic graphs with terms is presented now. The idea is to use the global table
feature of Gentle. The entries of the table Continue are statement lists, representing the body of a loop. The
goto statement uses a table key of type LABEL for accessing the entries in the table. Whenever a goto (lab)
statement is interpreted, the statement list is taken from the Continue table using the lab as key for it. This
statement list is then interpreted.

The following program shows the needed changes: In the STMT term the while must be replaced, the grammar
must be changed in the “while” rule. An extra predicate WhileCode is needed, because global variables and
tables are not allowed in nonterminal clauses. When translating a loop, a goto statement is appended to the
instructions forming the initial loop body. This instruction sequence is then stored in the Continuate table.
When interpreting the goto instruction, the instructions stored in the table are retrieved and interpreted. The
label is used only for documentation purposes, when printing the statement list.

STMT =

stmts (STMTS) ,

assign (IDENT, TREE),

if (TREE, STMT, STMT),

label (LABEL),

goto (LABEL) ,

print (TREE) ,

prints (STRING),

proc_call (IDENT, TREES),

return,

return_val (TREE),

null -- for empty else part of an if-stmt
Stmt (-> S1):

WHILE Condition (-> T) Stmt (-> S)
WhileCode (T, S -> S1)
TABLE’ STMT Continue [LABEL].

’ACTION’ WhileCode (TREE, STMT -> STMT).

WhileCode (Cond, Body -> S):
’KEY’ LABEL Lab
Append_STMTS (s(Body, nil), goto (Lab) -> NewBody)
Append_STMTS (s(label(Lab),nil), if(Cond, stmts(NewBody),null) -> Loop)
Continue [Lab] <- stmts (Loop)
Continue [Labl -> S

Execute (label (Lab))
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Execute (goto (Lab)):
Continue [Lab] -> Next
Execute (Next)

3.9.1 Other work
The makemake files must be adapted accordingly, using the new name of the system (HOC5).

3.10 Procedures and functions, Hoc6

Now the last step is reached on the way to Hoc. Function and procedure declarations, function and procedure
call, parameter passing, reading values from the keyboard and printing them on the terminal are added to the
language.

Functions and procedures are new objects, having their body as additional information, 0BJECT is extended by

-- function or procedure
function (STMT)
procedure (STMT)

The DefMeaning andGetMeaning are modified reflecting this new objects. New statements are introduced:

proc_call (IDENT, TREES)
return —-- return from procedure
return_val (TREE) -- returning a value from function call

Parameters are represented as an expression list:
TREES = t (TREE, TREES), nil .

The expression term type EXPR is extended to represent function calls and formal parameters. The scanner is
modified to accept formal parameters, the attribute attached to them is their number coded as an integer.

func_call (IDENT, TREES)
formalparam (INT)

3.10.1 The parser

The grammar rules for function and procedure declarations are:

’NONTERM’ Def.

FUNC IDENTIFIER (-> Id) LEFTPAR RIGHTPAR Stmt (-> Body)
DefMeaning (Id, function (stmts (s(Body, s(return, nil)))))

Def :
PROC IDENTIFIER (-> Id) LEFTPAR RIGHTPAR Stmt (-> Body)
DefMeaning (Id, procedure (stmts (s(Body, s(return, nil)))))

The return is appended, for the case that the user forgets it in functions, and because in procedures no explicit
return is needed.
The grammar rules for function and procedure call are obvious.
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3.10.2 Function and procedure call

For the interpretation of a procedure or function call the following things must be done:

Get the statements implementing the procedure / function (using predicate GetMeaning).
Evaluate the actual parameters (using predicate Evaluate List).

Since nested function calls are possible, the parameters must be passed on a parameter stack (using global
variable ParamStack). The parameter stack is implemented as a list of values, the value are accessed
using their positional number in the list. The parameters for standard functions are passed with the same
method.

Interprete the body of the function / procedure (using the predicates EvalFunction and ExecProc). The
formal parameters get their values from the parameter stack. It is checked, that there are enough actual
parameters passed. A return or return_val statement stops the execution of the rest of a statement list
of the procedure containing it. Dealing with that information (that a return occurred) is done by using
the global variable ReturnOccured. A return or return val statement sets it to true, after finishing a
procedure call it is set to false. Function results are returned using the global variable FunctionResult.

Remove the actual parameters from the parameter stack.

Check that a function call has returned a value, and that a procedure call hasn’t done it.

The important modifications to call a function or procedure are:

Execute (proc_call (Id, Args)):

ExecuteProc (Id, Args)

Execute (return)

ReturnOccured <- true

Execute (return_val (T)):

Evaluate (T -> R)

FunctionResult <- R
FunctionResult_IsReturned <- true
ReturnOccured <- true

Evaluate (func_call (Id, Args) -> R):

EvalFunction (Id, Args -> R)

Evaluate (formalparam (Nr) -> R): -- evaluation of expressions

GetParam (ParamStack, Nr -> R)

The interpretation of function / procedure bodies:

ACTION’ ExecList (STMTS).

-- Executes a list of statements. If a return / return_val statement is
-- executed, the rest of the statement list is skipped.

ExecList (nil)

ExecList (s(S,L)):

Execute (S)
Is_NoReturnOccured
ExecList (L)

ExecList (s(S,L))

ACTION’ ExecuteProc (IDENT, TREES).
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—— Checks, that ’IDENT’ is a procedure or function
-- and executes the corresponding statements
ExecuteProc (Id, Args):
GetMeaning (Id -> procedure (Body))
EvaluateList (Args -> Values)
-- push passed arguments onto the parameter stack
ParamStack -> Ps
ParamStack <- ps(Values, Ps)
-- execute procedure code
FunctionResult_IsReturned <- false
Execute (Body)
CheckNoResultIsReturned (Id)
ReturnOccured <- false
-- pop parameter stack
ParamStack <- Ps

ExecuteProc (Id, Args):
GetMeaning (Id -> function (Body))
EvalFunction (Id, Args -> R)
put_s1 ("\\t")
put_r (R)
put_s1 ("\\n")
put_bf

ExecuteProc (Id, Args):

ERROR_IDENT ("’@’ is not declared as procedure / function", Id, 0)

’ACTION’ EvalFunction (IDENT, TREES -> REAL).

-- checks, that ’IDENT’ is a function name and returns the value of ’f(x)’
EvalFunction (Id, Args -> R):
GetMeaning (Id -> Object)
EvaluateList (Args -> Values)
-- push passed arguments onto the parameter stack
ParamStack -> Ps
ParamStack <- ps(Values, Ps)
-— execute function code
EvalFunc (Id, Object -> R)
-- pop parameter stack
ParamStack <- Ps

EvalFunction (Id, Args -> Zero):
ERROR_IDENT ("undeclared identifier @’ ", Id, 0)

ACTION’ EvalFunc (IDENT, OBJECT -> REAL).
EvalFunc (Id, function (Body) -> Result):
FunctionResult_IsReturned <- false
Execute (Body)
FunctionResult -> Result
CheckResultIsReturned (Id)
ReturnOccured <- false

EvalFunc (Id, Func -> R):
IsBuiltInFunc (Func)
GetParam (ParamStack, 1 -> Arg)
EvalBuiltInFunc (Func, Arg -> R)
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EvalFunc (Id, Obj -> Zero):
ERROR_IDENT ("’@’ is not declared as function", Id, 0)

Handling parameters:

PARAMSTACK =
ps (TREES, PARAMSTACK),
nil .

VAR’ PARAMSTACK ParamStack.

’ACTION’ GetParam (PARAMSTACK, INT -> REAL).

-- Returns value of the actual parameter ’n’ of the current called func/proc.
-- If n > number of passed parameters, an error message is emitted.
GetParam (nil, Nr -> Zero):
ERROR ("formal parameter access not inside of a procedure or
function",0)
GetParam (ps (T, S), Nr -> Val):
SearchParam (T, Nr, 1 -> Val)

’ACTION’ SearchParam (TREES, INT, INT -> REAL).

-— If Nr == CurNr, then the parameter with number ’Nr’ is found and returned.
-— If Nr < CurNr, the next element of the tree list is tried (with CurNr

- incremented by one.

-- If there is no more element in the tree list, an error message is emitted.

SearchParam (nil, Nr, CurNr -> Zero):
ERROR ("too less parameters passed",0)

SearchParam (t(const (Val), Trees), Nr, CurNr -> Val):
Eq_Int (Nr, CurNr)

SearchParam (t(const (X), Trees), Nr, CurNr -> Val):
SearchParam (Trees, Nr, CurNr+1 -> Val)

3.10.3 Other work

Since Hoc has the read statement, it must be possible to read numbers from the terminal. Do not confuse this
reading with the job, the scanner does. read reads a number during interpretation of a Hoc program, not while
the program is parsed.

The files auz.g and auz.c are extended by :

BOOL = true, false .

’CONDITION’ read_real (-> REAL).
-- reads from ’stdin’ a character sequence
—— succeeds if it is a real number
—— fails if it is not a real number or EQF

/* implementation of ’CONDITION’ read_real (-> REAL)’ */
BOOL g_read_real (r)
double **r;
{
char line [255];
*r=(double*) G_pool_alloc (sizeof(double));
switch (scanf ("}1f", *r)) {
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case EQOF : **r=1.0; return FALSE;
case 0 : **r=1.0; scanf ("%s", line); return FALSE;
default : return TRUE;
}
}

The makemake files must be adapted accordingly, using the new name of the system (HOCS).
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The Gentle Manual Page Entry

NAME
g, g-all, gentle, gtags, glint - Compiler description language and compiler generation tool

SYNOPSIS
g [-noedit | -nolist] name
g-all [-noedit | -nolist]

gentle [-noedit | -nolist] name ...

gtags
glint [-nolist] name ...

DESCRIPTION
Gentle is a compiler specification language, which may used for other text manipulation purposes too.
The language is based on Horn logic.

Gentle is also a tool for generating an executable program (compiler) for that specification. Output of
the Gentle system is a set of C programs and input to a scanner and parser generator, which must be
compiled and linked together to get the desired compiler.

Commands
Before using any of the commands below, the environment variable GENTLE_DIR must be set to
the directory containing the Gentle system, which is usually
GENTLE_DIR = /usr/local/lib/gentle

The commands are contained in $GENTLE_DIR /bin, they denote:
g name analyses the specification contained in file name.g. All other files *.g in the
current directory are also visited, but only for the Gentle specification name
output is generated.

g-all analyses all Gentle specifications (i.e. all files *.g of the current directory),
and produces output for them.

gentle name ... analyses all given specifications. Only for the first specification output is
generated.

gtags Supports the tags feature of the vi editor. All global visible Gentle iden-

tifiers, defined in the Gentle specifications contained in files of the current
directory are inserted into the tags file. When editing a Gentle specification
using the vi editor, pressing the ctrl | key searches the definition of the word,
and the cursor is positioned to that point. The ’’ (two single quotes) or ctrl
~ (control and tilde) keys return to the original position, if the definition
was contained in the same file or in another file.

glint name ... Analyses the gentle specification contained in the specified files and prints
to the standard output device an alphabeticaly sorted cross reference listing
of identifers, the context free grammar (in Bachus-Naur-Form), as well as
errors, and warnings.
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Error handling
If an error was detected during analysis of a specification, the textual error message and the source file
are shown together in the editor vi. The error messages are positioned below the lines containing the
errors. Using the v key in the command modus of vi positions the cursor to the next line containing
an error. This file may be edited, the error messages are removed after leaving the editor.

OPTIONS
-noedit If this option is present, no editor is called. If it is not present, the editor vi is opened with
the given first name
-nolist  Implies the option -noedit. If this option is given, the error handling procedure is not
encountered (i.e. the error messages are not shown together with the source text). The
error messages (if any) are written to files ERRORS-name-ERRORS, where name is the
filename of the Gentle module containing the errors.
FILES
name.g Gentle specification.
SCANNER.rex Specification of the scanner using rex.
MAIN.c The main procedure of the generated system.
name The generated system. name must be specified in the makemake
makefile generator.
makemake Is the Gentle makefile generator.
makefile The generated makefile.
tags Produced by gtags.

ERRORS-name-ERRORS

LISTING-name-LISTING

Contains error generated by the Gentle system, where name is the
filename of the Gentle module containing the errors.
The file contining the merged source and error messages.

g * Files generated by the Gentle tool.

g.name.c C source file for Gentle module name.

g. TOKENS.h Token specification.

g. TOKEN_STRINGS.h Used for error handling.

g.cfg Input (context free grammer, etc.) for yacc.
g.PARSER.lalr Input (context free grammer, etc.) for lalr.

_Debug Debugging information generated by the parser generator.
g.SCANNER. * The generated scanner.

g.PARSER. * The generated parser.

g.SCANNER_TYPES.h*
g. PARSER_TYPES.h*

VERSION
The current version is 3.9, August 25, 1992

SEE ALSO
rex [Grosch 87], lalr [Vielsack 88, Grosch 90], vi
[Schrier 89] [Vollmer 91a] [Vollmer 91b)]

This manual.

The file $GENTLE_DIR /documentation/CHANGES contains a description of the changes of the system

and language.

Generated type definitions for the scanner.
Generated type definitions for the parser.
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The Hoc Manual Page Entry

NAME
hoc - interactive floating point language

SYNOPSIS
hoc [ file ... ]

DESCRIPTION
Hoc interpretes a simple language for floating point arithmetic, at about the level of BASIC, with C-like
syntax and function and procedures with arguments and recursion.
The named files are read and interpreted in order. If no file is given or if file is - (dash) Hoc interprets the
standard input.
Hoc input consists of expressions and statements. Expressions are evaluated and their results are reported.
Statements, typically assignments and function or procedure definitions, produce no output unless they
explicitly call print.

SEE ALSO
Hoc — An Interactive Language for Floating Point Arithmetic by Brian Kernighan and Rob Pike.
bas (1), be (1) and dc (1).

BUGS

The treatment of newlines is not exactly user-friendly.
In interactive mode, two newline characters must be given to let the system report a result of an expression.
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Syntax Summary

LargeIdent = (" | ... | "Z" ) (letter | digit)=*
SmallIdent = ("a" | ... | "z" ) (letter | digit)*
Identifier = Largeldent | Smallldent

letter sz L) U | nzm | man ... ngn | onom
digit tr= o mo" | ... | "Om

-- starts a single line comment and
/* starts a /* possibly nested */ comment, which may range
over several lines */

Gentle_Spec ’MODULE’ Identifier ModuleBody .

ModuleBody = (Declaration | Signature | Clause )* .
Declaration = TermTypeDecl | OpaqueTypeDecl | GlobalVarDecl | GlobalTableDecl
TermTypeDecl ::= Type "=" FunctorList "."

Type ::= Largeldent.

FunctorList ::=  ( Functor | Functor "(" Arguments ")" ) // ","

Functor ::= Smallldent.

Arguments ::=  Argument // ","

Argument ::= [LargeIdent ":" ] Type .

OpaqueTypeDecl ::= ’TYPE’ Type "."

IntConst = digit + .

StringConst = """ Char * """

Char = <any (escaped) character, except " and line break>

Signature ::=  ’TOKEN’ Identifier [ OutArguments ] "." |

’NONTERM’> Identifier [ OutArguments ] "." |
’ACTION’ Identifier [ InOutArguments ] "." |
’CONDITION’ Identifier [ InOutArguments ] "."

OutArguments ti= (" "->" Arguments ")"

InOutArguments ::= "(" [ Arguments ] "->" Arguments ")"

Clause ::= Head ":" Tail "."

Head ::= HeadLiteral

Tail ::= TailLiteral * .

HeadLiteral ::= Identifier [ "(" FormalParameters ")" ]

TailLiterals ::= TailLiteral * .

TailLiteral ::=  Identifier [ "(" ActualParameters ")" ] |
GlobalVarRead | GlobalVarWrite |
GlobalTableNewEntry |
GlobalTableRead | GlobalTableWrite

LocalVariable ::= Largeldent.
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FormalParameters
ActualParameters
Parameters
InParameters
OutParameters
Parameter

Term
ArgumentList
Expression

Operator

GlobalVarDecls
GlobalVariables

GlobalVarRead
GlobalVarWrite

GlobalTableDecl
GlobalTable
KeyType

GlobalTableRead
GlobalTableWrite
KeyVariable

GlobalTableNewEntry
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Parameters

Parameters

[ InParameters ] [ "->" OutParameters ]
Parameter // ","

Parameter // ","

Term |

LocalVariable | GlobalVariable |
StringConst | IntConst |
Expression Operator Expression .
Functor [ "(" ArgumentList ")" ]
Parameter // ","

LocalVariable | GlobalVariable |

IntConst |
(Expression Operator Expression)
||+|| | n_n I ll*ll | II/II

’VAR’ Type GlobalVariable "."
Largeldent.

GlobalVariable "->" Parameter .
GlobalVariable "<-" Parameter .

’TABLE’ ((Type GlobalTable) // "," ) "[" KeyType "1".
Largeldent.
Largeldent.

GlobalTable "[" KeyVariable "]" "->" Parameter .
GlobalTable "[" KeyVariable "]" '"<-" Parameter .
LocalVariable

::= ’KEY’ KeyType KeyVariable
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